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Abstract 

The purpose of this study is to prove Ulam-Hyers stability of two-variable radical functional 

equations in quasi-Banach spaces. As a consequence of the main result, we get an outcome on the stability 

of such functional equations in Banach spaces. 
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Tóm tắt 

Mục đích của bài báo là chứng minh tính ổn định Ulam-Hyers của phương trình hàm căn 2 biến trên 

không gian tựa Banach. Hệ quả thu được là tính ổn định Ulam-Hyers của phương trình hàm này trên 

không gian Banach. 
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1. Introduction  

The first stability problem concerning the 

group homomorphisms was introduced by Ulam 

(Ulam, 1960) and the first partial result on stability 

for additive mapping in Banach spaces was 

proposed by Hyers (Hyers, 1941). Later, the 

stability of functional equations has been studied in 

many different types of spaces. Recently, studying 

the stability of functional equations in quasi-

Banach spaces has attracted many authors (Nguyen 

& Vo, 2018; Nguyen & Nguyen, 2021; Nguyen & 

Sintunavarat, 2019;  Eskandani, 2008; Najati & 

Moghimi, 2008). 

The quasi-normed space is a generalization of 

a normed space (Kalton, 2003; Kalton et al., 1984). 

The difference between a quasi-norm and a norm is 

the modulus of concavity 1  , see Definition 

1.1.(3) below. As a consequence, a quasi-norm is 

not necessarily continuous and the inequality does 

not necessarily hold for more than two points. 

In 2021, Iz-Iddine El-Fassi introduced a new 

type of two-variable radical functional equations as 

follows: 

( , ) = ( , ) ( , )k k k l llf x u y v f x y f u v        (1) 

for all , , ,x y u v  and ,k l  are fixed numbers. 

Then, the authors also studied the generalized 

hyperstability of such an equation. 

In this paper, we investigate the Ulam-Hyers 

stability of two-variable radical functional 

equations in quasi-Banach spaces. We also deduce 

a consequence of the stability of such functional 

equations in Banach spaces. 

First, we recall some results on quasi-Banach 

space (Aoki, 1942; Kalton et al., 1984), which is 

useful in the main results. 

1.1. Definition  

Let X  be a vector space over the field , 

1   and . : X   be a function such that 

for all , , ,x y X r    

1. = 0x  if and only if = 0.x   

2. =| | . || .rx r x   

3. ( ).x y x y     

Then,  

1. .  is called a quasi-norm in ,X  the 

possible smallest   is called the modulus of 

concavity and ( , . , )X   is called a quasi-normed 

space. For a quasi-normed space ( , . , )X  , 

without loss of the generality we can assume that 

  is the modulus of concavity.  

2. .  is called a p -norm and ( , . , )X   is 

called a p -normed space if for some (0;1]p  and 

all , ,x y X  .p p px y x y                (2) 

3. The sequence { }nx  is called convergent to 

x  if = 0,lim n
n

x x


  written = .lim n
n

x x


  

4. The sequence { }nx  is called Cauchy if 

,

= 0.lim n m
n m

x x


   

5. The quasi-normed space ( , . , )X   is 

called a quasi-Banach space if each Cauchy 

sequence is convergent.  

6. The quasi-normed space ( , . , )X   is 

called a p -Banach space if it is p -normed and 

quasi-Banach.  

The next theorem show that each quasi-norm 

is equivalent to some p-norm (Maligranda, 2008). 

This is an important tool to prove the main results. 

It is called Aoki–Rolewicz theorem. 

1.2. Theorem  (Aoki–Rolewicz theorem).  

Let ( , , . )X   be a quasi-normed space, 

2
= 2logp


 and 

1

=1 =1

||| |||= inf{( ) : = , , 1}
n n

p p

i i i

i i

x x x x x X n    

for all .x X  Then, ||| . |||  is a quasi-norm on X  

satisfying  ||| ||| ||| ||| ||| |||p p px y x y              (3) 

and 
1

||| |||
2

x x x


                         (4) 

for all , .x y X  In particular, the quasi-norm ||| . |||  

is a p -norm and if .  is a norm then =1p  and 

||| . |||= . .   

2. Main results 

First, we show a property of the two-variable 

radical functional equation (1).  
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2.1. Lemma  

Let X  be a vector space and 2:F X  be 

a mapping satisfying (1). Then, F  satisfies the 

following equation ( , ) = 2 ( 2 , 2 )
k ln n nF x y F x y   

(5) for all ,x y  and all .n   

Proof. By replacing = , =u x v y  in (1), we 

find that  

0 = ( , ) ( , ) ( , )k k k l llF x x y y F x y F x y   
 

 
= ( 2 , 2 ) 2 ( , ).k lF x y F x y

 

This implies that  ( 2 , 2 ) = 2 ( , )k lF x y F x y
 
for 

all , .x y  It follows that the formula (5) holds 

for =1n . Suppose that (5) holds for some positive 

integer >1,n  that is ( 2 , 2 ) = 2 ( , )
k ln n nF x y F x y

for all ,x y .  

For all , ,x y  we find that  

 1 1( 2 , 2 ) = ( 2. 2 , 2. 2 )
k l k ln n n nk lF x y F x y   

 = 2 ( 2 , 2 )
k ln nF x y  = 2.2 ( , )n F x y  1= 2 ( , ).n F x y  

Therefore, the formula (5) holds.  

Finally, we investigate the stability of the two-

variable radical functional equation (1) in quasi-

Banach spaces.  

2.2. Theorem  

 Let ( , , . )X   be a quasi-Banach space, 
2:  f X  be a mapping and > 0  satisfying  

 ( , ) ( , ) ( , )k k k l llf x u y v f x y f u v       (6) 

for all , , ,x y u v  and , .k l  

Then, there exists a unique mapping 
2:F X  satisfying the following  

1. F is a solution of the two-variable radical 

functional equation (1).  

2. ( , ) = 2 ( 2 , 2 )lim
k ln n n

n

F x y f x y



 for all 

, .x y   

3. For all , ,x y  
2

= 2,logp


  

1
2

( , ) ( , ) ( ) .
2 1

p

p
f x y F x y  


  (7) 

Proof. By replacing = , =u x v y  in inequality 

(6), we find that  

12 ( 2 , 2 ) ( , ) .
2

k lf x y f x y
     (8) 

Applying Theorem 1.2 to (8), we obtain   

   1||| 2 (( 2 , 2 ) ( , ) |||pk lf x y f x y    

12 (( 2 , 2 ) ( , ) .
2

p
pk l

p
f x y f x y

          (9) 

Set ( , ) = 2 ( 2 , 2 )
k ln n n

nF x y f x y  for all 

, .x y  By induction, we prove that  

1 2
||| ( , ) ( , ) |||

2 1

np
p p

n p
f x y F x y 


 


  (10) 

for all , ,x y  .n  It follows from (9) that (10) 

holds for =1.n  Assume that the formula (10) holds 

for some positive integer >1.n  Then, using the 

assumption of induction and (9), we obtain  

1||| ( , ) ( , ) |||p

nf x y F x y
  

1||| ( , ) ( , ) ||| ||| ( , ) ( , ) |||p p

n n nf x y F x y F x y F x y     

( 1) 1 11 2
||| 2 ( 2 , 2 ) 2 ( 2 , 2 ) |||

2 1

np
k l k lp n n n n n n p

p
f x y f x y


    

  


                                                                   

11 2
2 ||| ( 2 , 2 ) 2 ( 2 2 , 2 2 ) |||

2 1

np
k l k lp np n n n n pk l

p
f x y f x y


 

  


 

1 2 2

2 1 2

np np p
p

p p




 
 

  

 

1 2 2 (1 2 )
=

2 1 2 1

np np p
p p

p p
 

   


   
( 1)1 2

= .
2 1

n p
p

p


 

  

for all , .x y  It follows that the formula (10) 

holds. 

Next, we claim that { ( , )}nF x y  is a Cauchy 

sequence in X  for all , .x y  Letting ,m n  

and > ,m n  by applying (10) and Theorem 1.2, we 

obtain 

1
( , ) ( , )

2

p

m nF x y F x y  

||| ( , ) ( , ) |||p

m nF x y F x y 

||| 2 . ( 2 , 2 ) 2 . ( 2 , 2 ) |||
k l k lm m m n n n pf x y f x y    

( )2 . ||| 2 . ( 2 . 2 , 2 . 2 ) ( 2 , 2 ) |||
k k l l k lnp m n m n n m n n n n pf x y f x y       
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2 ||| ( 2 , 2 ) ( 2 , 2 ) |||
k l k lnp n n n n p

m nF x y f x y

 
 

( )1 2
2 .

2 1

m n p
np p

p


 
 




                                (11)
  

for all , .x y  Then, taking the limit as ,n m  

in the inequality (11), we obtain  

,

( , ) ( , ) = 0lim m n
n m

F x y F x y


  

for all , .x y  Thus, we conclude that { ( , )}nF x y  

is a Cauchy sequence in .X  Since X  is a quasi-

Banach, there exists 2:F X  such that  

( , ) = ( , )lim n
n

F x y F x y


                  (12) 

for all , .x y  Taking the limit as n  in (10) 

and applying Theorem 1.2 and (12), we obtain

1
( , ) ( , ) ||| ( , ) ( , ) |||

2

p pf x y F x y f x y F x y    

 =||| ( , ) ( , ) |||lim
p

n
n

f x y F x y



 

 = ||| ( , ) ( , ) |||lim
p

n
n

f x y F x y



 

 
1 2

( )lim
2 1

np
p

p
n










=

2 1

p

p



                       (13) 

for all , .x y  Then, approximation (7) is a 

consequence of (13). 

Now, we prove F  is a solution of the two-

variable radical functional equation (1). By 

applying Theorem 1.2 and the assumption (6), we 

find that    

||| ( , ) ( , ) ( , ) |||k k k l ll
n n nF x u y v F x y F u v   

( , ) ( , ) ( , )k k k l ll
n n nF x u y v F x y F u v      

= 2 . ( 2 . , 2 . ) 2 . ( 2 , 2 ) 2 . ( 2 , 2 )
k l k l k lkn n k k n l l n n n n n nlf x u y v f x y f u v       

= 2 ( 2 . , 2 . ) ( 2 , 2 ) ( 2 , 2 )
k l k l k lkn n k k n l l n n n nlf x u y v f x y f u v      

= 2 . ( ( 2 ) ( 2 ) , ( 2 ) ( 2 ) ) ( 2 , 2 ) ( 2 , 2 )
k k l l k l k ln n k n k n l n l n n n nk lf x u y v f x y f u v      

2 n                                              (14) 

for , , , .x y u v  Taking the limit as n  in (14) 

and using (12), we obtain 

  
||| ( , ) ( , ) ( , ) |||k k k l llF x u y v F x y F u v     

=||| ( , ) ( , ) ( , ) |||lim lim lim
k k k l ll

n n n
n n n

F x u y v F x y F u v
  

     

= ||| ( , ) ( , ) ( , ) |||lim
k k k l ll

n n n
n

F x u y v F x y F u v


   
 

(2 ) 0lim
n

n





   
                                 

(15) 

for all , , , .x y u v  It follows from (15) that  

( , ) ( , ) ( , ) = 0k k k l llF x u y v F x y F u v     

for all , , , ,x y u v  that means F  is a solution of 

the two-variable radical functional equation (1). 

Finally, we prove the uniqueness of the 

mapping .F  Suppose that there exists a mapping 
2:G X  such that G  is also a solution of the 

two-variable radical functional equation (1) and 

satisfying the following approximation (7). It 

follows from Lemma 2.1 that  

( , ) = 2 ( 2 , 2 ),
k ln n nF x y F x y

 

( , ) = 2 ( 2 , 2 )
k ln n nG x y G x y

 

for all , .x y  Using Lemma 2.1 and (13), we 

obtain  

   ||| ( , ) ( , ) |||F x y G x y  

=||| 2 ( 2 , 2 ) 2 ( 2 , 2 ) |||
k l k ln n n n n n pF x y G x y 

 

= 2 .||| ( 2 , 2 ) ( 2 , 2 ) |||
k l k lnp n n n n pF x y G x y 

 

2 .(||| ( 2 , 2 ) ( 2 , 2 ) |||
k l k lnp n n n n pF x y f x y 

 

||| ( 2 , 2 ) ( 2 , 2 ) ||| )
k l k ln n n n pf x y G x y 

 

2 .( )
2 1 2 1

np

p p

  
 

12

2 1

np

p

 


             (16) 

for all , .x y  Taking the limit as n  in 

inequality (16), we obtain ( , ) = ( , )F x y G x y  for all 

, .x y  Hence, =F G  and the theorem has been 

proved.  

2.3. Remark  

By choosing =1  in the Theorem 2.2, we 

obtain the result on stability of the two-variable 

radical functional equation (1) in Banach spaces. 

Note that, in Theorem 2.2 if .  is a norm then 

=1p  and ||| . |||= . .  

2.4. Corollary   

Let ( , . )X  be a Banach space, > 0  and 
2:  f X  be a mapping such that  

( , ) ( , ) ( , )k k k l llf x u y v f x y f u v       
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for all , , ,x y u v  and , .k l  

Then, there exists a unique mapping 
2:F X  satisfying the following  

1. F  satisfies the two-variable radical 

mapping equation (1).  

2. ( , ) = 2 ( 2 , 2 )lim
k ln n n

n

F x y f x y



 for all 

, .x y   

3. F  satisfies the approximation 

( , ) ( , )f x y F x y    for all , .x y   
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