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Abstract 

In this work, we first present a new class of generalized differentials, namely subdifferentials with 

degrees of freedom as well as their applications in nonsmooth optimization problems. We then establish 

some computation rules for subdifferentials with degree of frecdom of functions under basic qualification 

constraints. By using these computation rules, we provide necessary and sufficient conditions for 

unconstraint optmization problems and for optimization problems with geometric constraints. 
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Tóm tắt 

Trong bài viết này, trước tiên chúng tôi giới thiệu một lớp mới của các vi phân suy rộng, được gọi là 

dưới vi phân có bậc tự do, cũng như những áp dụng của chúng vào các bài toán tối ưu không trơn. Sau 

đó, chúng tôi thiết lập một số quy tắc tính cho dưới vi phân có bậc tự do của những hàm số dưới điều kiện 

chuẩn hoá cơ bản. Sử dụng những quy tắc tính này, chúng tôi cung cấp điều kiện cần và đủ cho bài toán 

tối ưu không ràng buộc và bài toán tối ưu với ràng buộc tập. 

Từ khóa: Dưới vi phân, điều kiện tối ưu, hàm lồi tổng quát, quy tắc tính.  
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1. Introduction and Preliminaries 

General convexity as well as results on the 

analysis of generalized convex functions have been 

of interest to many authors (Ansari et al., 2014; Lara 

et al., 2021; Lara et al., 2022; Lara, 2022; Kagani et 

al., 2022). Some different types of subdifferentials 

were introduced in the literature. It was known that 

different types of subdifferentials are perfectly 

suited to a different class of functions, such as: the 

convex subdifferential for convex functions 

(Rockafellar, 1996), the Clarke's subdifferential for 

locally Lipschitz continuous functions (Clarke, 

1983), and the strong subdifferentials for strongly 

quasiconvex functions (Lara, 2022; Kabgani et al. 

(2022). Inspired from Lara et al. (2021, Kagani et 

al. (2022), and Thinh et al. (2024), we present, in 

this work, new subdifferentials, namely 

subdifferentials with degrees of freedom of 

nonconvex functions, and then we state calculation 

rules for such subdifferentials. Using obtained 

calculation rules, we provide the necessary and 

sufficient conditions for points to be solutions to 

optimization problems. So, we also propose a class 

of functions that are perfectly suited to 

subdifferentials with degrees of freedom. Besides, 

one way to define subdifferentials of a single-

valued mapping was based on normal cones to its 

epigraph. 

In this paper, we first introduce a new 

generalized normal set as a generalization of 

convex normal cones. After that, we establish 

formulas for calculating such normal sets. These 

formulas are basic for establishing calculation rules 

for subdifferentials with degrees of freedom of 

functions belonging to a class of new generalized 

convex functions. 

Throughout this paper, we always assume that 

𝑋 is a Banach space with norm ∥⋅∥ and its 

topological dual 𝑋∗. Let 𝐶 be a nonemptyset in 𝑋, 

we define 

𝛿𝐶(𝑥): = {
0  if 𝑥 ∈ 𝐶
∞  otherwise. 

 

For a pair (𝑥, 𝑥∗) ∈ 𝑋 × 𝑋∗, the symbol ⟨𝑥∗, 𝑥⟩ 
indicates the canonical pairing between 𝑋 and 𝑋∗. 

Let 𝐶 be a nonempty subset of 𝑋. The relative 

interior of 𝐶 defined by 

re(C):= {𝑥 ∈ 𝐶 ∣ ∃𝜖 > 0:𝔹𝜖(𝑥) ∩ aff(𝐶) ⊂ 𝐶} 

where 𝔹𝜖(𝑥) is a ball of radius 𝜖 and centered on 𝑥, 

and aff(𝐶) is the affine hull of 𝐶. The (convex) 

normal cone to 𝐶 at 𝑥‾ ∈ 𝐶 is given by 

𝑁(𝑥, 𝐶):= {𝑥∗ ∈ 𝑋∗ ∣ ⟨𝑥∗, 𝑥 − 𝑥‾⟩ ≤ 0∀𝑥 ∈ 𝐶}. 
Let 𝑓: 𝑋 → ℝ̅:= ℝ ∪ {∞}. The singular 

subdifferential of 𝑓 at 𝑥‾ ∈ dom 𝑓 is defined by 

∂∞𝑓(𝑥‾): = 𝑁(𝑥‾, dom 𝑓). 
2. Normal sets with degrees of freedom to 

sets 

Let 𝐶 be a nonempty closed convex subset of 

𝑋. The mapping 𝜈: 𝐶 × 𝐶 → ℝ which satisfies (i) 

𝜈(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶, and (ii) lim𝑥→𝑥‾  𝜈(𝑥, 𝑥‾) →
0 for all 𝑥‾ ∈ 𝐶 is called to be a like-distance 

function on 𝐶. 

Let ∅ ≠ Ω ⊂ 𝑋 and let 𝜈: 𝑋 × 𝑋 → ℝ be a like-

distance function on 𝑋. The 𝜈-normal set (or normal 

set with degree of freedom) to Ω at 𝑥‾ ∈ Ω is defined 

by 

𝑁𝜈(𝑥‾, Ω): = {𝑥∗ ∈ 𝑋∗ ∣ ⟨𝑥∗, 𝑥 − 𝑥‾⟩ + 𝜈(𝑥, 𝑥‾)
≤ 0, ∀𝑥 ∈ Ω}. 

If 𝜈(⋅, 𝑥‾) ≡ 0 then 𝑁𝜈(𝑥‾, Ω) reduces to the convex 

normal cone to Ω at 𝑥‾. 
We now establish formulas for calculating of 

𝜈-normal sets to sets. In the the case of 𝜈(⋅ 𝑥‾) = 0 

for all 𝑥 ∈ 𝑋, the following results reduce to the 

exiting results in convex analysis. 

Theorem 1. Let Ω1, Ω2 be subsets of 𝑋 with 𝑥‾ ∈ Ω1 

and 𝑦‾ ∈ Ω2. Let 𝜈1, 𝜈2: 𝑋 × 𝑋 → ℝ be like-distance 

functions. Then we get 

𝑁𝜈((𝑥‾, 𝑦‾), Ω1 × Ω2) = 𝑁𝜈1(𝑥‾, Ω1) × 𝑁𝜈2(𝑥‾, Ω2)   
    (1.1) 

where 𝜈: 𝑋2 × 𝑋2 → ℝ is defined by 

𝜈((𝑥, 𝑦); (𝑢, 𝑣)): = 𝜈1(𝑥, 𝑢) + 𝜈2(𝑦, 𝑣) for all 

(𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝑋2. 

Proof. Take 𝑣 = (𝑣1, 𝑣2) ∈ 𝑋 × 𝑋 satisfying 𝑣 ∈
𝑁𝜈((𝑥‾, 𝑦‾), Ω1 × Ω2). By the definition, we get 

⟨(𝑣1, 𝑣2), (𝑥, 𝑦) − (𝑥‾, 𝑦‾)⟩ + 𝜈((𝑥, 𝑦), (𝑥‾, 𝑦‾)) ≤
0, ∀(𝑥, 𝑦) ∈ Ω1 × Ω2. 

This is equivalent to 

⟨𝑣1, 𝑥 − 𝑥‾⟩ + 𝜈1(𝑥, 𝑥‾) + ⟨𝑣2, 𝑦 − 𝑦‾⟩ + 𝜈2(𝑦, 𝑦‾) ≤
0, ∀𝑥 ∈ Ω1, 𝑦 ∈ Ω2.      (1.2) 

Taking 𝑦 = 𝑦‾ into account, we get 
⟨𝑣1, 𝑥 − 𝑥‾⟩ + 𝜈1(𝑥, 𝑥‾) ≤ 0, ∀𝑥 ∈ Ω1 

which means that 𝑣1 ∈ 𝑁𝜈1(𝑥‾, Ω1). 
Similarly, picking 𝑥 = 𝑥‾ in (1.2), we get 

⟨𝑣2, 𝑦 − 𝑦‾⟩ + 𝜈2(𝑦, 𝑦‾) ≤ 0, ∀𝑦 ∈ Ω2 

which implies that 𝑣2 ∈ 𝑁𝜈2(𝑦‾, Ω2). 
Thus, we have 
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𝑁𝜈((𝑥‾, 𝑦‾), Ω1 × Ω2) ⊂ 𝑁𝜈1(𝑥‾, Ω1) × 𝑁𝜈2(𝑦‾, Ω2).
    (1.3) 

Otherwise, let 𝑣1 ∈ 𝑁𝜈1(𝑥‾, Ω1) and 𝑣2 ∈
𝑁𝜈2(𝑦‾, Ω2). By the definition, we get 

⟨𝑣1, 𝑥 − 𝑥‾⟩ + 𝜈1(𝑥, 𝑥‾) ≤ 0, ∀𝑥 ∈ Ω1 

and 

⟨𝑣2, 𝑦 − 𝑦‾⟩ + 𝜈2(𝑦, 𝑦‾) ≤ 0, ∀𝑦 ∈ Ω2. 
It follows that 
⟨𝑣1, 𝑥 − 𝑥‾⟩ + 𝜈1(𝑥, 𝑥‾) + ⟨𝑣2, 𝑦 − 𝑦‾⟩ + 𝜈2(𝑦, 𝑦‾)

≤ 0, ∀𝑥 ∈ Ω1, 𝑦 ∈ Ω2 

which is equivalent to 

⟨(𝑣1, 𝑣2), (𝑥, 𝑦) − (𝑥‾, 𝑦‾)⟩ + 𝜈((𝑥, 𝑦), (𝑥‾, 𝑦‾))

≤ 0, ∀(𝑥, 𝑦) ∈ Ω1 × Ω2. 
This deduces that 

(𝑣1, 𝑣2) ∈ 𝑁𝜈((𝑥‾, 𝑦‾), Ω1 × Ω2) 
which gives us the following relation 

𝑁𝜈1(𝑥‾, Ω) × 𝑁𝜈2(𝑦‾, Ω2) ⊂ 𝑁𝜈((𝑥‾, 𝑦‾), Ω1 × Ω2). 
    (1.4) 

It implies from (1.3) and (1.4) that (1.1) holds. 

Corollary 2. Let Ω1, Ω2 be subsets of 𝑋 with 𝑥‾ ∈
Ω1 and 𝑦‾ ∈ Ω2. Let �̃�: 𝑋 × 𝑋 → ℝ be a like-distance 

function. Then, we get 

𝑁𝜈((𝑥‾, 𝑦‾), Ω1 × Ω2) = 𝑁𝜈‾ (𝑥‾, Ω1) ×
𝑁(𝑥‾, Ω2) (1.5) 

where 𝜈: 𝑋2 × 𝑋2 → ℝ is defined by 

𝜈((𝑥, 𝑦), (𝑢, 𝑣)):= �̃�(𝑥, 𝑢) for all (𝑥, 𝑦), (𝑢, 𝑣) ∈
𝑋2. 

Proof. It directly implies from Theorem 1 with 

𝜈1(𝑥, 𝑢) = �̃�(𝑥, 𝑢) and 𝜈2(𝑦, 𝑣) = 0 for any 

(𝑥, 𝑢), (𝑦, 𝑣) ∈ 𝑋2. 

Theorem 3. Let Ω1, Ω2 be convex subsets of 𝑋 with 

𝑥‾ ∈ Ω1 ∩ Ω2. Let 𝜈: 𝑋 × 𝑋 → ℝ be a like-distance 

function satisfying 𝜈(⋅, 𝑥‾): 𝑋 → ℝ is concave on 

Ω2. Then, for any 𝑣 ∈ 𝑁𝜈(𝑥‾, Ω1 ∩ Ω2), there exist 

𝜆 ∈ {0,1} and 𝑣1 ∈ 𝑁(𝑥‾, Ω1), 𝑣2 ∈ 𝑁𝜆𝜈(𝑥‾, Ω2) 
such that (𝜆, 𝑣1) ≠ 0 and 

 𝜆𝑣 = 𝑣1 + 𝑣2.  (1.6) 

Proof. Take 𝑣 ∈ 𝑁𝜈(𝑥‾, Ω1 ∩ Ω2). By the definition, 

we get 
⟨𝑣, 𝑥 − 𝑥‾⟩ + 𝜈(𝑥, 𝑥‾) ≤ 0, ∀𝑥 ∈ Ω1 ∩ Ω2. 

Set Θ1: = Ω1 × [0,∞) and Θ2: = {(𝑥, 𝜆) ∈ Ω2 ×
ℝ ∣ 𝜆 ≤ ⟨𝑣, 𝑥 − 𝑥‾⟩ + 𝜈(𝑥, 𝑥‾)}. By the convexity of 

Ω1, Ω2 and the concavity of 𝜈(⋅, 𝑥‾), it exists that 

Θ1, Θ2 are convex sets. Moreover, Θ1, Θ2 form an 

extremal system due to the fact that for arbitrarily 

𝑎 > 0, we get Θ1 ∩ (Θ2 − (0, 𝑎)) = ∅. 

By using [Mordukhovich et al. (2014), Theorem 

2.8], we find (𝑤, 𝛾) ∈ 𝑋 × ℝ separating Θ1 and Θ2 

in the sense that 
⟨𝑤, 𝑥⟩ + 𝛾𝜆1 ≤ ⟨𝑤, 𝑦⟩ + 𝛾𝜆2, ∀(𝑥, 𝜆1) ∈
Θ1, ∀(𝑦, 𝜆2) ∈ Θ2.   (1.7) 

It is clear that 𝛾 ≤ 0. Indeed, if the opposite is that 

𝛾 > 0, then picking (𝑥, 𝜆1) = (𝑥‾, 1) and (𝑦, 𝜆2) =
(𝑦‾, 0) in (1.7), we get 𝛾 ≤ 0. This is a contradiction. 

Let’s consider the following two cases: 

Case 1. 𝛾 = 0. In this case, 𝑤 ≠ 0. Moreover, it 

implies from (1.7) that 

⟨𝑤, 𝑥⟩ ≤ ⟨𝑤, 𝑦⟩, ∀𝑥 ∈ Ω1, 𝑦 ∈ Ω2 

which follows that 𝑤 ∈ 𝑁(𝑥‾, Ω1) and −𝑤 ∈
𝑁(𝑥‾, Ω2) = 𝑁𝛾𝜈(𝑥‾, Ω2). Thus, the assertion (1.6) 

holds with 𝜆 = 0 and 𝑣1 = 𝑤, 𝑣2 = −𝑤. 

Case 2. 𝛾 < 0. For any 𝑥 ∈ Ω1, taking (𝑥, 𝜆1) =
(𝑥, 0) ∈ Θ1 and (𝑦, 𝜆2) = (𝑥‾, 0) ∈ Θ2 into (1.7), 

we obtain ⟨𝑤, 𝑥 − 𝑥‾⟩ ≤ 0, ∀𝑥 ∈ Ω1 

which means that 𝑤 ∈ 𝑁(𝑥‾, Ω1). So −
𝑤

𝛾
∈

𝑁(𝑥‾, Ω1). To proceed further, for any 𝑥 ∈ Ω2, 

picking (𝑥‾, 0) ∈ Θ1 and (𝑥, ⟨𝑣, 𝑥 − 𝑥‾⟩ + 𝜈(𝑥, 𝑥‾)) ∈
Θ2 in (1.7), we get 

⟨𝑤, 𝑥 − 𝑥‾⟩ + 𝛾(⟨𝑣, 𝑥 − 𝑥‾⟩ + 𝜈(𝑥, 𝑥‾)) ≥ 0. (1.8) 

Dividing both sides of (1.8) by 𝛾, we get 

⟨
𝑤

𝛾
+ 𝑣, 𝑥 − 𝑥‾⟩ + 𝜈(𝑥, 𝑥‾) ≤ 0∀𝑥 ∈ Ω2. 

which gives us that 
𝑤

𝛾
+ 𝑣 ∈ 𝑁𝜈(𝑥‾, Ω2). Thus (1.6) 

holds with 𝑣1 =
−𝑤

𝛾
, 𝑣2 =

𝑤

𝛾
+ 𝑣 and 𝜆 = 1. Hence, 

the proof is completed. 

Theorem 4. Let Ω1, Ω2 be nonempty convex 

subsets of 𝑋 and 𝑥‾ ∈ Ω1 ∩ Ω2. Let 𝜈 : 𝑋 × 𝑋 → ℝ 

be a like-distance function which satisfies 𝜈(⋅
, 𝑥‾): 𝑋 → ℝ is concave on Ω2. Assume that the basic 

qualification condition (𝐵𝑄𝐶) is satisfied 

𝑁(𝑥‾, Ω1) ∩ [−𝑁(𝑥‾, Ω2)] = {0}. 
Then we get 

𝑁𝜈(𝑥‾, Ω1 ∩ Ω2) = 𝑁(𝑥‾, Ω1) + 𝑁𝜈(𝑥‾, Ω2). 
Proof. Take 𝑣 ∈ 𝑁𝜈(𝑥‾, Ω1 ∩ Ω2). By using 

Proposition 3, we find 𝜆 ∈ {0,1}, 𝑣1 ∈ 𝑁(𝑥‾, Ω1) 
and 𝑣2 ∈ 𝑁𝜆𝜈(𝑥‾, Ω2) such that (𝜆, 𝑣1) ≠ 0 and 

𝜆𝑣 = 𝑣1 + 𝑣2. If 𝜆 = 0 then 𝑣1 ≠ 0 and 𝑣2 =
−𝑣1 ∈ 𝑁(𝑥‾, Ω2). Thus 0 ≠ 𝑣1 ∈ [−𝑁(𝑥‾, Ω2)] ∩
𝑁(𝑥‾, Ω1) which contradicts to (BQC). So 𝜆 = 1. 

Using Proposition 3 again, we find 𝑣1 ∈ 𝑁(𝑥‾, Ω1) 
and 𝑣2 ∈ 𝑁𝜈(𝑥‾, Ω2) such that 𝑣 = 𝑣1 + 𝑣2 which 

follows that 

𝑁𝜈(𝑥‾, Ω1 ∩ Ω2) ⊂ 𝑁(𝑥‾, Ω1) + 𝑁𝜈(𝑥‾, Ω2). 



 

Natural Sciences Issue 

16 

 

 

To show the opposite inclusion, we take 𝑣1 ∈
𝑁(𝑥‾, Ω1) and 𝑣2 ∈ 𝑁𝜈(𝑥‾, Ω2). We have from the 

definition that 
⟨𝑣1, 𝑥 − 𝑥‾⟩ ≤ 0, ∀𝑥 ∈ Ω1 and ⟨𝑣2, 𝑥 − 𝑥‾⟩ +
𝜈(𝑥, 𝑥‾) ≤ 0, ∀𝑥 ∈ Ω2. 

Therefore, for any 𝑥 ∈ Ω1 ∩ Ω2, we get 

⟨𝑣1 + 𝑣2, 𝑥 − 𝑥‾⟩ + 𝜈(𝑥, 𝑥‾) ≤ 0 

which implies that 𝑣1 + 𝑣2 ∈ 𝑁𝜈(𝑥‾, Ω1 ∩ Ω2). 
Thus, we get 

𝑁𝜈(𝑥‾, Ω1 ∩ Ω2) ⊃ 𝑁(𝑥‾, Ω1) + 𝑁𝜈(𝑥‾, Ω2). 
Hence, the proof is completed. 

3. Subdifferential with degree of freedom of 

functions 

This section presents a new version of 

subdifferential for functions, namely 

subdifferential with degree of freedom of functions. 

This is a generalization of the convex 

subdifferential known in convex analysis. 

Definition 5. Let 𝜈 be a like-distance function 𝑋 

and let 𝑓: 𝑋 → ℝ̅:= ℝ ∪ {∞}. The subdifferential 

with degree of freedom (or 𝜈-subdifferential) of 𝑓 

at 𝑥‾ ∈ dom 𝑓 is defined by 

∂𝜈𝑓(𝑥‾):= {𝑥∗ ∈ 𝑋∗ ∣ 𝑓(𝑥) ≥ 𝑓(𝑥‾) + ⟨𝑥∗, 𝑥 −
𝑥‾⟩ + 𝜈(𝑥, 𝑥‾)∀𝑥 ∈ dom 𝑓}. 
Theorem 6. Let 𝑓: 𝑋 → ℝ̅ and 𝜈: 𝑋 × 𝑋 → ℝ be a 

like-distance function. Then we get 

∂𝜈(𝜆𝑓)(𝑥) = 𝜆 ∂
𝜈
𝜆𝑓(𝑥)∀𝜆 > 0, 𝑥 ∈ dom 𝑓 

Proof. Let 𝑥 ∈ dom𝑓, 𝜆 > 0 and 𝑥∗ ∈ ∂𝜈(𝜆𝑓)(𝑥). 
We have by the definition that 

𝜆𝑓(𝑢) ≥ 𝜆𝑓(𝑥) + ⟨𝑥∗, 𝑢 − 𝑥⟩ + 𝜈(𝑢, 𝑥)∀𝑢
∈ dom 𝑓 

which is equivalent to 

𝑓(𝑢) ≥ 𝑓(𝑥) + ⟨
𝑥∗

𝜆
, 𝑢 − 𝑥⟩ +

1

𝜆
𝜈(𝑢, 𝑥)∀𝑢

∈ dom𝑓.  

This means that 0 ∈ ∂
1

𝑥
𝜈𝑓(𝑥) 

Hence, the proof of theorem is completed. 

We next provide computation rules for 

subdifferential with degree of freedom of functions 

as follows. 

Theorem 7. Let 𝑓1, 𝑓2: 𝑋 → ℝ̅:= ℝ ∪ {∞} be 

convex functions on 𝑋 and let 𝜈 : 𝑋 × 𝑋 → ℝ be a 

like-distance function which is concave and non-

negative on dom𝑓1. Assume that the following 

qualification condition is satisfied at 𝑥‾ ∈ dom 𝑓1 ∩
dom𝑓2 : 

[−∂∞𝑓1(𝑥‾)] ∩ ∂∞𝑓2(𝑥‾) = {0} 

Then, we get  

∂𝜈(𝑓1 + 𝑓2)(𝑥‾) = ∂𝜈𝑓1(𝑥‾) + ∂𝑓2(𝑥‾). 
Proof. Let 𝑣 ∈ ∂𝜈(𝑓1 + 𝑓2)(𝑥‾). By the definition, 

we get 

𝑓1(𝑥) + 𝑓2(𝑥) ≥ 𝑓1(𝑥‾) + 𝑓2(𝑥‾) + ⟨𝑣, 𝑥 − 𝑥‾⟩ +
𝑣(𝑥, 𝑥‾), ∀𝑥 ∈ 𝑋.   (1.9) 

We define the following sets 

Ω1: = {(𝑥, 𝜆1, 𝜆2) ∈ 𝑋 × ℝ × ℝ ∣ 𝜆1 ≥ 𝑓1(𝑥)} 
and 

Ω2: = {(𝑥, 𝜆1, 𝜆2) ∈ 𝑋 × ℝ × ℝ ∣ 𝜆2 ≥ 𝑓2(𝑥)}. 
Then by the convexity of 𝑓1 and 𝑓2, Ω1 and Ω2 are 

also convex. We define �̃�: (𝑋 × ℝ × ℝ) × (𝑋 ×

ℝ ×ℝ) → ℝ by �̃�((𝑥1, 𝜆1, 𝛽1), (𝑥2, 𝜆2, 𝛽2)):=

𝜈(𝑥1, 𝑥2) as a concave function due to the concavity 

of 𝜈. We will show that (𝑣, −1,−1) ∈

𝑁�̃�((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω1 ∩ Ω2). 

Indeed, we get from (1.1) that ⟨𝑣, 𝑥 − 𝑥‾⟩ −
1(𝜆 − 𝑓1(𝑥‾)) − 1(𝛽 − 𝑓2(𝑥‾)) +
�̃�((𝑥, 𝜆, 𝛽), (𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾))) ≤ 0, ∀(𝑥, 𝜆, 𝛽) ∈

Ω1 ∩ Ω2 meaning that (𝑣, −1,−1) ∈
𝑁�̃�((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω1 ∩ Ω2). Moreover, by 

Corollary 2, we get 

𝑁𝜈‾ ((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω1)

= 𝑁𝜈‾ ((𝑥‾, 𝑓1(𝑥‾)), epi 𝑓1) × {0} 

where 𝜈‾: 𝑋 × ℝ × 𝑋 × ℝ → ℝ is define by 

𝜈‾((𝑥, 𝜆), (𝑦, 𝛽)):= 𝜈(𝑥, 𝑦). Furthermore, it is 

obvious from the definition that 

𝑁((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω2)

= {(𝑥∗, 0, 𝛽) ∈ 𝑋∗ × ℝ× ℝ

∣ (𝑥∗, 𝛽) ∈ 𝑁((𝑥‾, 𝑓2(𝑥‾)), Ω2)}. 
To proceed further, it is necessary to prove that 

[−𝑁((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω1)]

∩ 𝑁 ((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω2)

= {(0,0,0)}. 
Indeed, let in the opposite that 

(0,0,0) ≠ (𝑣1, 𝑣2, 𝑣3)

∈ [−𝑁((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω1)]

∩ 𝑁((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω2) 

then 𝑣2 = 𝑣3 = 0 and 𝑣1 ≠ 0. By the definition, we 

get 
⟨−𝑣1, 𝑥 − 𝑥‾⟩ ≤ 0∀𝑥 ∈ dom𝑓1 and ⟨𝑣1, 𝑥 − 𝑥‾⟩

≤ 0∀𝑥 ∈ dom𝑓2 

which imply that 𝑣1 ∈ (−∂∞𝑓1(𝑥‾)) ∩ (∂∞𝑓2(𝑥‾)). 
This contradicts to the assumption that 
[− ∂∞𝑓1(𝑥‾)] ∩ ∂∞𝑓2(𝑥‾) = {0}. Therefore, by 

using Theorem 4, we find elements (𝑣1, −1,0) ∈ 
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𝑁�̃�((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω1) and (𝑣2, 0, −1) ∈

𝑁((𝑥‾, 𝑓1(𝑥‾), 𝑓2(𝑥‾)), Ω2) such that 

(𝑣, −1,−1) = (𝑣1, −1,0) + (𝑣2, 0, −1). 
This follows that 𝑣 = 𝑣1 + 𝑣2 with 𝑣1 ∈ ∂𝜈𝑓1(𝑥‾) 
and 𝑣2 ∈ ∂𝑓2(𝑥‾). Hence, the proof of the theorem 

is completed. 

We next introduce a new version of the 

generalized convexity of functions as follows.  

Definition 8. Let 𝜈 be a like-distance function on 

𝐶 ⊂ 𝑋 and let 𝒞 be convex. The function 𝑓: 𝐶 → ℝ̅ 

is called to be 𝜈-convex at 𝑥‾ ∈ dom 𝑓 if dom𝑓 is 

a nonempty convex set and for any 𝑥, 𝑦 ∈ dom 𝑓 

and 𝜑(⋅): = 𝑓(⋅) − 𝜈(⋅, 𝑥‾) is convex. 𝑓 is called 𝜈-

convex on 𝐶 if it is 𝜈-convex at any 𝑥 ∈ 𝐶. 

Remark 9. 𝑓 is 0 -convex on 𝑋 if and only if 𝑓 is 

convex.  

It is known in convex analysis that the convex 

subdifferential of convex functions at any relative 

interior point of its domain are nonempty sets. We 

now present a similar result for 𝜈-convex functions 

and 𝜈-subdifferentials as follows. 

Theorem 10. Let 𝜈 be a like-distance function 𝑋. 

Let 𝑓: 𝑋 → ℝ̅ be a 𝜈-convex function. Then 

∂𝜈𝑓(𝑥) ≠ ∅ for any 𝑥 ∈ re(dom 𝑓). 
Proof. Fix 𝑥 ∈ re(dom 𝑓). Since 𝑓(⋅) − 𝜈(⋅, 𝑥) is 

convex, there exists 𝑥∗ ∈ ∂(𝑓(⋅) − 𝜈(⋅, 𝑥))(𝑥) 
which means that 𝑓(𝑢) − 𝜈(𝑢, 𝑥) ≥ 𝑓(𝑥) −
𝜈(𝑥, 𝑥) + ⟨𝑥∗, 𝑢 − 𝑥⟩∀𝑥 ∈ 𝑋. 
This is equivalent to 

𝑓(𝑢) ≥ 𝑓(𝑥) + ⟨𝑥∗, 𝑢 − 𝑥⟩ + 𝜈(𝑢, 𝑥)∀𝑥 ∈ 𝑋 

which follows that 𝑥∗ ∈ ∂𝜈𝑓(𝑥). 
4. Applications to optimization problems 

The main goal of this section is to establish 

necessary and sufficient condition for a 

generalized solution to optimization problems. 

We first introduce generalized solutions to the 

optimization problems as follows.  
Definition 11. Let 𝜈 be a like-distance function 𝑋. 

Let 𝑓: 𝑋 → ℝ̅ and let 𝑥‾ ∈ dom 𝑓. Then 𝑥‾ is called 

𝜈-minimizer of 𝑓 if 

𝑓(𝑥) ≥ 𝑓(𝑥‾) + 𝜈(𝑥, 𝑥‾) for all 𝑥 ∈ dom 𝑓 

Remark 12. (i) If 𝜈(𝑥, 𝑥‾) ≥ 0 for all 𝑥 ∈ dom 𝑓 

then 𝑥‾ is a global minimizer of 𝑓 whenever 𝑥‾ is 𝜈-

minimizer of 𝑓. 

(ii) If 𝜈(𝑥, 𝑥‾) = ℓ ∥ 𝑥 − 𝑥‾ ∥ with some ℓ > 0, for 

all 𝑥 ∈ dom𝑓 then 𝑓 is (global) calm at 𝑥‾ if and 

only if 𝑥‾ is 𝜈-minimizer of 𝑓. 

(iii) If 𝜈(𝑥, 𝑥‾) = ℓ ∥ 𝑥 − 𝑥‾ ∥2 with some ℓ > 0, for 

all 𝑥 ∈ dom𝑓 then 𝑓 is global second order growth 

at 𝑥‾ if and only if 𝑥‾ is 𝜈-minimizer of 𝑓. 

Theorem 13. Let 𝜈 be a like-distance function 𝑋. 

Let 𝑓: 𝑋 → ℝ̅ be a 𝜈-convex function. An element 

𝑥‾ ∈ dom 𝑓 is a 𝜈-minimizer of 𝑓 if and only if 

0 ∈ ∂𝜈𝑓(𝑥‾) 
Proof. Let 𝑥‾ be 𝜈-minimizer of 𝑓. By the definition, 

we have 

𝑓(𝑥) ≥ 𝑓(𝑥‾) + 𝜈(𝑥, 𝑥‾) for all 𝑥 ∈ dom 𝑓 

This is equivalent to 

𝑓(𝑥) ≥ 𝑓(𝑥‾) + ⟨0, 𝑥 − 𝑥‾⟩ + 𝜈(𝑥, 𝑥‾)∀𝑥 ∈ dom𝑓 

This means that 0 ∈ ∂𝜈𝑓(𝑥‾). 
Example 1. Consider the function 𝑓(𝑥) = 𝑒𝑥 −

1 − 𝑥 and 𝜈(𝑥, 𝑦):=
1

6
(𝑥 − 𝑦)3 for any 

𝑥, 𝑦 ∈ ℝ. It is clearly that 

0 ∈ ∂𝜈𝑓(0) = {0}. 
Thus, 𝑥‾ = 0 is a 𝜈-minimizer of 𝑓 due to Theorem 

13. We will directly check that 𝑥‾ is a 𝜈-minimizer 

of 𝑓. Indeed, the function 𝑔(𝑥):= 𝑒𝑥 − 1 − 𝑥 −
1

6
𝑥3 is convex because of 𝑔′′(𝑥) = 𝑒𝑥 − 𝑥 > 0 for 

all 𝑥 ∈ ℝ. Moreover, 𝑥‾ = 0 is the unique solution 

to the equation 𝑔′(𝑥) = 0. This implies that 𝑥‾ = 0 

is a global minimizer of 𝑔 which means that 𝑔(𝑥) ≥
𝑔(𝑥‾) = 0 for all 𝑥 ∈ ℝ. Therefore, 

𝑓(𝑥) = 𝑒𝑥 − 1 − 𝑥 ≥ 𝑓(𝑥‾) + 𝜈(𝑥, 𝑥‾) for all 𝑥
∈ ℝ 

which follows that 𝑥‾ is a 𝜈-minimizer of 𝑓. 

 We close this section by establishing the 

necessary and sufficient optimality condition for 

the following problem: 

 min𝑓(𝑥) such that 𝑥 ∈ 𝐶     (1.1) 

where 𝐶 is a nonempty closed convex set and 𝑓 is a 

convex function on 𝑋 with 𝐶 ⊂ dom𝑓. 

 Let 𝜈: 𝑋 × 𝑋 → ℝ̅ be a like-distance 

function on 𝐶. A point 𝑥‾ ∈ 𝐶 is called a 𝜈-global 

solution to the problem (1.1) if 

𝑓(𝑥) ≥ 𝑓(𝑥‾) + 𝜈(𝑥, 𝑥‾)∀𝑥 ∈ 𝐶. 
Theorem 14. Consider the problem (1.1). Let 𝜈 be 

a like-distance function on 𝐶 and 𝑓 be 𝜈-convex on 

𝐶. Assume that 𝑥‾ ∈ 𝐶 and the qualification 

condition 

 [− ∂∞𝑓(𝑥‾)] ∩ 𝑁(𝑥‾, 𝐶) = {0}  (1.2) 

holds. Then 𝑥‾ ∈ 𝐶 is the 𝜈-global solution to the 

problem (1.1) if and only if 

0 ∈ ∂𝜈𝑓(𝑥‾) + 𝑁(𝑥‾, 𝐶). 
Proof. Let 𝑥‾ be a 𝜈-global solution to the problem 

(1.1). It is equivalent to that 𝑥‾ is a 𝜈-minimizer of 
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𝑓 + 𝛿𝐶 . According to Theorem 13, 𝑥‾ is a 𝜈-

minimizer of 𝑓 + 𝛿𝐶  if and only if 0 ∈ ∂𝜈(𝑓 +
𝛿𝐶)(𝑥‾) which is equivalent to 

0 ∈ ∂𝜈𝑓(𝑥‾) + 𝑁(𝑥‾, 𝐶) 
due to Theorem 7 and the qualification condition 

(1.2). Thus, 𝑥‾ is 𝜈-global solution to the problem 

(1.1) if and only if 

0 ∈ ∂𝜈𝑓(𝑥‾) + 𝑁(𝑥‾, 𝐶). 
Hence, the proof is completed. 

Remark 15. In the case of 𝜈(⋅, 𝑥‾) = 0 for all 𝑥 ∈ 𝐶, 

Theorem 14 reduces to the exiting result in convex 

analyis (see [Rockafellar (1996)]). 
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