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Tém tit

Trong bai viét nay, trudc tién ching t6i giGi thiéu mot 16p méi cia cac vi phdan suy
rong, duoc goi la dudi vi phdn co bdc tw do, ciing nhuw nhitng dap dung cia ching vao cac bai
todn téi wu khong tron. Sau do, chiing toi thiét lap mot so quy tic tinh cho duéi vi phan co
bdc tw do ciia nhitng ham sé dwdi diéu kién chudn hod co ban. Sir dung nhitng quy tdc tinh
nay, ching téi cung cdp diéu kién can va di cho bai todn téi wu khéong rang budc va bai todn
10i wu véi rang bugc tdp.

T khéa: Dudi vi phdn, diéu kién t6i wu, ham 16i tong quat, quy tdc tinh.
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1. Introduction and Preliminaries

General convexity as well as results on the analysis of generalized convex functions
have been of interest to many authors (Ansari et al., 2014; Lara et al., 2021; Lara et al., 2022;
Lara, 2022; Kagani et al., 2022). Some different types of subdifferentials were introduced in
the literature. It was known that different types of subdifferentials are perfectly suited to a
different class of functions, such as: the convex subdifferential for convex functions
(Rockafellar, 1996), the Clarke's subdifferential for locally Lipschitz continuous functions
(Clarke, 1983), and the strong subdifferentials for strongly quasiconvex functions (Lara, 2022;
Kabgani et al. (2022). Inspired from Lara et al. (2021, Kagani et al. (2022), and Thinh et al.
(2024), we present, in this work, new subdifferentials, namely subdifferentials with degrees of
freedom of nonconvex functions, and then we state calculation rules for such subdifferentials.
Using obtained calculation rules, we provide the necessary and sufficient conditions for points
to be solutions to optimization problems. So, we also propose a class of functions that are
perfectly suited to subdifferentials with degrees of freedom. Besides, one way to define
subdifferentials of a single-valued mapping was based on normal cones to its epigraph.

In this paper, we first introduce a new generalized normal set as a generalization of
convex normal cones. After that, we establish formulas for calculating such normal sets. These
formulas are basic for establishing calculation rules for subdifferentials with degrees of
freedom of functions belonging to a class of new generalized convex functions.

Throughout this paper, we always assume that X is a Banach space with norm |I-]| and
its topological dual X*. Let C be a nonemptyset in X, we define

_ (0 ifxecC
Oc(x): = {oo otherwise.
For a pair (x,x*) € X x X*, the symbol (x*, x) indicates the canonical pairing between
X and X*. Let C be a nonempty subset of X. The relative interior of C defined by
re (C):={x€C|3e>0:B.(x) naff (C) c C}

where B, (x) is a ball of radius € and centered on x, and aff (C) is the affine hull of C.
The (convex) normal cone to C at x € C is given by

N C):={x"eX | (x",x—x)<0Vx € C}.

Let f: X - R:= R U {oo}. The singular subdifferential of f at ¥ € dom f is defined by
0°f(x):= N(x,dom f).

2. Normal sets with degrees of freedom to sets

Let C be a nonempty closed convex subset of X. The mapping v: C X C — R which
satisfies (i) v(x,x) = 0 for all x € C, and (ii) lim,_zv(x, X) — 0 for all x € C is called to be
a like-distance function on C.

Let® # Q c X and let v: X x X — R be a like-distance function on X. The v-normal
set (or normal set with degree of freedom) to Q at x € Q is defined by

NV, Q):={x"eX* | (x",x—x)+v(x,x) <0,Vx € Q}.
If v(-,x) = 0 then NV (x, ) reduces to the convex normal cone to Q at x.

We now establish formulas for calculating of v-normal sets to sets. In the the case of
v(- x) = 0 for all x € X, the following results reduce to the exiting results in convex analysis.
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Theorem 1. Let Q4, Q, be subsets of X withx € Q; andy € Q,. Letvy,v,: X X X - R
be like-distance functions. Then we get

NY((%,7), Q4 X Qp) = N"1(X, Q) X N2 (%, Q,) 1.1

where v: X? x X2 > R is defined by v((x,y); (u, v)): = v;(x,u) + v,(y,v) for all
(x,y), (u,v) € X2.

Proof. Take v = (vy,v,) € XXX satisfying v € NV((x,y),Q; X Q,). By the
definition, we get

((v1,v2), (%, y) = (£, 7)) + v((x, ), (%,7)) < 0,V(x,y) € Q1 X Qy.

This is equivalent to

(v, x —=X) +v1(6,%) + (v, y — V) + v, (1,Y) < 0,Vx € Q,y € Q,. 1.2)
Taking y = y into account, we get (v, x — X) + v;(x, %) < 0,Vx €

which means that v; € NV1(x, Q,).

Similarly, picking x = x in (1.2), we get (v,,y — y) + v, (y,y) < 0,Vy € Q,
which implies that v, € NV2(y,Q,).

Thus, we have NV ((x,y),Q; X Q,) € NV1(x,Q;) X NV2(y,0Q,). (1.3)

Otherwise, let v, € NY1(x,Q,) and v, € NV2(y,Q,). By the definition, we get
(vll‘x _f> +V1(xlf) < O,VX € 'Ql and (Vz;y _}7> +V2(y,}7) < O;Vy € ‘QZ'

It follows that (v, x — ) + v1(x, %) + (vo,y = 7) + v, (¥, ¥) < 0,Vx € O,y € Q,
which is equivalent to
(0, v2), (%, ¥) = (£ 7)) +v((x,¥), (£ 7)) < 0,V(x,y) € Qy X Qy.
This deduces that (v4,v,) € NY((%,¥), Q1 X Q)
which gives us the following relation
NY1(%,Q) x N"2(y,Q3) € NY((%,7), Q1 X Q). (1.4)
It implies from (1.3) and (1.4) that (1.1) holds.

Corollary 2. Let Q4, Q, be subsets of X with x € Q; and y € Q,. Let 7: X X X - R be
a like-distance function. Then, we get

NY((%,9), Q1 X Q) = NY(%,04) X N(%, Q;) (1.5)
where v: X2 x X% - R is defined by v((x,y), (u, v)): = ¥(x, u) for all (x,y), (u,v) € X2.

Proof. It directly implies from Theorem 1 with v4 (x, u) = 7 (x, u) and v, (y, v) = 0 for
any (x,u), (y,v) € X2.

Theorem 3. Let Q4, Q, be convex subsets of X withx € Q; N Q,. Letv:X X X - Rbe
a like-distance function satisfying v(:,x): X — R is concave on Q,. Then, for any v €
NY(%,Q; N Q,), thereexist A € {0,1}and v; € N(%,Q,),v, € N*(x,Q,) suchthat (1, v,) #
0Oand Av =v; +v,. (1.6)

Proof. Take v € NV (i, Q; N Q,). By the definition, we get
(v, x —x)+v(x,x) <0,Vx € Q; NQ,.
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Set 0;:=Q; X [0,0) and ©,:= {(x,4) € Q, X R| 1 < (v,x — X) + v(x,%)}. By the
convexity of Q,,Q, and the concavity of v(-, x), it exists that ®,,0, are convex sets.
Moreover, 04,0, form an extremal system due to the fact that for arbitrarily a > 0, we get
0; N (O, —(0,a)) = Q.

By using [Mordukhovich et al. (2014), Theorem 2.8], we find (w,y) € X xR
separating 0, and 0, in the sense that

w,x) +yd; <(w,y) +y1,,V¥(x,1;) € 0,,V(y,4;) € 0,. (1.7)

It is clear that y < 0. Indeed, if the opposite is that y > 0, then picking (x,1,) = (x,1)
and (y,4;) = (¥,0) in (1.7), we get y < 0. This is a contradiction. Let’s consider the
following two cases:

Case 1.y = 0. In this case, w # 0. Moreover, it implies from (1.7) that
w,x) <(w,y),Vx € Q,y €Q,

which follows that w € N(x,Q;) and —w € N(x,Q,) = NYV(x,Q,). Thus, the
assertion (1.6) holds withA = 0 and v, = w, v, = —w.

Case 2.y < 0. Forany x € Qq, taking (x,4;) = (x,0) € 0, and (y,1,) = (x,0) € 0,
into (1.7), we obtain (w,x — x) < 0,vx € Q,

which means that w € N(x, ;). So —% € N(x,Q,). To proceed further, for any x €
Q,, picking (x,0) € ©; and (x, (v, x — X) + v(x,x)) € O, in (1.7), we get

w,x —x)+y({v,x —x)+v(x,x)) = 0.(1.8)

Dividing both sides of (1.8) by y, we get

w
<?+ vV, X —JZ> +v(x,x) < 0Vx € Q,.

which gives us that% + v € NV(%,Q,). Thus (1.6) holds with v; = % v, = % + vand
A = 1. Hence, the proof is completed.

Theorem 4. Let Q4,Q, be nonempty convex subsets of X and x € Q; N Q,. Let v :
X X X - R be a like-distance function which satisfies v(:,x): X — R is concave on ,.
Assume that the basic qualification condition (BQC) is satisfied

Then we get NV(x,Q; N Q,) = N(x,Q,) + NV (X, Q,).

Proof. Take v € NV (x,Q; N Q,). By using Proposition 3, we find 4 € {0,1}, v, €
N(x,Q,) and v, € N* (%, Q,) such that (A, v;) # 0 and Av = v; + v,. IfA=0thenv, # 0
and v, = —v; € N(X,Q,). Thus 0 # v; € [-N(x,Q,)] N N(x,Q,) which contradicts to
(BQC). So A = 1. Using Proposition 3 again, we find v; € N(x,Q,) and v, € NV (x, Q,) such
that v = v; + v, which follows that NV (x,Q, N Q,) € N(x,Q,) + NV (%, Q,).

To show the opposite inclusion, we take v; € N(x, Q) and v, € NV (X, Q,). We have
from the definition that (v,,x — X) < 0,Vx € Q; and (v,,x — X) + v(x,X) < 0,Vx € Q,.

Therefore, forany x € Q; N Q,, we get (v; + v, x — %) +v(x, %) < 0
which implies that v; + v, € NV (%, Q, N Q,). Thus, we get
NY(x,Q; NQ,) D N(X, Q) + NV(x,Q,).
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Hence, the proof is completed.
3. Subdifferential with degree of freedom of functions

This section presents a new version of subdifferential for functions, namely
subdifferential with degree of freedom of functions. This is a generalization of the convex
subdifferential known in convex analysis.

Definition 5. Let v be a like-distance function X and let f: X - R:= R U {o0}. The
subdifferential with degree of freedom (or v-subdifferential) of f at X € dom f is defined by

f)={x"eX | f(x) = f(xX)+{(x",x —x)+v(x,X)Vx € dom f}.
Theorem 6. Let f: X - Rand v: X x X — R be a like-distance function. Then we get

4
(A )(x) = 102f(x) VA > 0,x € dom f
Proof. Let x € dom f,A > 0 and x* € 3V (Af)(x). We have by the definition that
Af(w) 2 Af(x) + (x*,u—x) +v(u,x)Vu € dom f

which is equivalent to f(u) > f(x) + <"7u - x> + Ly(u,x)vu € dom f.

1
This means that 0 € dx” f(x)
Hence, the proof of theorem is completed.

We next provide computation rules for subdifferential with degree of freedom of
functions as follows.

Theorem 7. Let fi, f,: X > R: = R U {0} be convex functionson X and letv : X x X —
R be a like-distance function which is concave and non-negative on dom f;. Assume that the
following qualification condition is satisfied at X € dom f; N dom f; :

[-9%f1()] N 0% f,(x) = {0}
Then, we get 0¥ (fy + f2) (%) = 0”f1(%) + 0f>(%).
Proof. Let v € 8V (f; + f,)(%). By the definition, we get
i)+ fL(x) = f1(0) + foL(X) + (v, x —X) + v(x,X),Vx € X. (1.9
We define the following sets Q;: = {(x,4;,4,) EX XR X R | 1; = f;(x)}
and Q,:={(x,11,4;) EXXRXR | A, = f,(x)}.

Then by the convexity of f; and f,,Q; and Q, are also convex. We define
7 (X X RXR) X (X X Rx R) = Rby #((x1, A4, B1), (x2, 22, B2) ): = v(x1, x,) as a concave
function due to the concavity of v. We will show that (v,—1,-1)¢€
Nv((f'ﬁ(f)'fz(f)); QN Qz)-

Indeed, we get from (1.1) that (v,x—x)— 11— fi (X)) —1(B8 — f,(%)) +
(A B), (% f1(X), (X)) <0, V(x,,B) EQ NQ, meaning that (v,—1,—-1)€
N?((%, f1(%), (%)), Q1 N Q). Moreover, by Corollary 2, we get

Nv((f:ﬁ(f):fz(f)):ﬂﬂ = Nv((f,fl(f)),epi f1) x {0}

where v: X X R X X X R = R is define by v((x, 1), (¥, 8)): = v(x,y). Furthermore, it
is obvious from the definition that
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N((® /(%) f(0), Q2) = {(x",0,8) € X* x RX R | (x, ) € N((%, f()), 02)}.

To proceed further, it is necessary to prove that

[-N(® @, £@),2)] 0 N (7 A, £D),0:) = {(0,0,0)}.
Indeed, let in the opposite that
(0,0,0) # (vy,v3,v3) € [-N((X, f1(8), (), 21)] 0 N((E f1(X), f()), Q)
then v, = v; = 0 and v; # 0. By the definition, we get
(—v1,x —x) < 0Vx € dom f; and (v;,x — X) < 0 Vx € dom f,

which imply that v; € (=3 f;(%)) N (0” f,(X)). This contradicts to the assumption
that [— 0% f;(X)] N 0°f,(x) = {0}. Therefore, by using Theorem 4, we find elements

(v1,—1,0) € N((x, f1(%), f2(%)), Q) and (v,,0,—1) € N((x, f1(%), f2(%)), Q) such that
(v,—1,-1) = (v1,—1,0) + (v,,0,—-1).

This follows that v = v; + v, with v; € 8V f; (%) and v, € df,(x). Hence, the proof of
the theorem is completed.

We next introduce a new version of the generalized convexity of functions as follows.

Definition 8. Let v be a like-distance function on € c X and let C be convex. The
function f: C — R is called to be v-convex at x € dom f if dom f is a nonempty convex set
and forany x,y € dom f and ¢(-):= f(-) — v(:, %) is convex. f is called v-convex on C if it
is v-convex at any x € C.

Remark 9. f is 0 -convex on X if and only if f is convex.

It is known in convex analysis that the convex subdifferential of convex functions at
any relative interior point of its domain are nonempty sets. We now present a similar result for
v-convex functions and v-subdifferentials as follows.

Theorem 10. Let v be a like-distance function X. Let f: X — R be a v-convex function.
Then 0V f(x) # @ for any x € re (dom f).

Proof. Fix x € re (dom f). Since f(-) —v(:, x) is convex, there exists x* € d(f(:) —
v(+,x))(x) which means that f(u) —v(u,x) = f(x) —v(x,x) + (x*,u — x)Vx € X.

This is equivalentto f(u) = f(x) + (x", u —x) + v(u,x)Vx € X
which follows that x* € 3Y f (x).
4. Applications to optimization problems

The main goal of this section is to establish necessary and sufficient condition for a
generalized solution to optimization problems. We first introduce generalized solutions to the
optimization problems as follows.

Definition 11. Let v be a like-distance function X. Let f: X —» R and let ¥ € dom f.
Then x is called v-minimizer of f if f(x) = f(X) + v(x, X) for all x € dom f

Remark 12. (i) If v(x,x) = 0 for all x € dom f then x is a global minimizer of f
whenever x is v-minimizer of f.

(i) Ifv(x,x) =2 Il x — x [l withsome £ > 0, forall x € dom f then f is (global) calm
at x if and only if x is v-minimizer of f.
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(i) If v(x,%) = € Il x — x I* with some ¢ > 0, for all x € dom f then f is global
second order growth at x if and only if x is v-minimizer of f.

Theorem 13. Let v be a like-distance function X. Let f: X — R be a v-convex function.
An element X € dom f is a v-minimizer of f if and only if 0 € 0V f(x)

Proof. Let x be v-minimizer of f. By the definition, we have
f(x) = f(x)+v(x,x) forall x €dom f
This is equivalent to f(x) = f(X) + (0,x — X) + v(x,X)Vx € dom f
This means that 0 € 9V f (x).
Example 1. Consider the function f(x) =e* -1 —x and v(x,y): = %(x —y)3 for
any x,y € R. Itis clearly that 0 € 3V f(0) = {0}.

Thus, ¥ = 0 is a v-minimizer of f due to Theorem 13. We will directly check that x is
a v-minimizer of f. Indeed, the function g(x):=e*—-1—x — %x3 is convex because of

g"'(x) =e*—x >0 for all x € R. Moreover, X = 0 is the unique solution to the equation
g'(x) = 0. This implies that x = 0 is a global minimizer of g which means that g(x) >
g(x) = 0forallx € R. Therefore, f(x) = e* =1 —x > f(x) + v(x, x) for all x € R, which
follows that x is a v-minimizer of f.

We close this section by establishing the necessary and sufficient optimality condition
for the following problem: minf (x) such that x € C (1.2)

where C is a nonempty closed convex set and f is a convex function on X with € c
dom f.

Letv: X x X - R be a like-distance function on C. A point x € C is called a v-global
solution to the problem (1.1) if

f(x) = f(x) +v(x,x)Vx € C.

Theorem 14. Consider the problem (1.1). Let v be a like-distance function on C and f
be v-convex on C. Assume that X € C and the qualification condition

[-0%f(D)]INN(x,C) = {0} (1.2)
holds. Then x € C is the v-global solution to the problem (1.1) if and only if
0€dVf(x)+ N(x,C).

Proof. Let x be a v-global solution to the problem (1.1). It is equivalent to that X is a v-
minimizer of f + .. According to Theorem 13, x is a v-minimizer of f + §. if and only if
0 € 3V (f + 6¢)(x) which is equivalentto 0 € 0V f(x) + N(x,C)

due to Theorem 7 and the qualification condition (1.2). Thus, x is v-global solution to
the problem (1.1) if and only if 0 € 3V f(x) + N(x, C).

Hence, the proof is completed.

Remark 15. In the case of v(:,x) = 0 for all x € C, Theorem 14 reduces to the exiting
result in convex analyis (see [Rockafellar (1996)]).
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