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Abstract

In this work, we first present a new class of generalized differentials, namely subdifferentials with
degrees of freedom as well as their applications in nonsmooth optimization problems. We then establish
some computation rules for subdifferentials with degree of frecdom of functions under basic qualification
constraints. By using these computation rules, we provide necessary and sufficient conditions for
unconstraint optmization problems and for optimization problems with geometric constraints.
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Tom tit

Trong bai viét nay, triréc tién ching tdi gisi thiéu mét 1ép méi cua cac vi phan suy rong, duot goi 1a
dudi vi phan c6 bdc tw do, ciing nhw nhitng ap dung cua chlng vao cac bai toan toi uu khong tron. Sau
do, ching toi thiet 1ap mot so quy tac tinh cho dudi vi phan c6 bac ti do cua nhing ham so duwdi dieu ki¢n
chudn hod co ban. Su: dung nhitng quy tac tinh nay, ching toi cung cap diéu ki¢n can va du cho bai toan
toi wu khéng rang bugc va bai toan toi wu voi rang bugc tap.

Tur khoa: Dudi vi phén, diéu kién téi wu, ham 161 tong quat, quy tac tinh.
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1. Introduction and Preliminaries

General convexity as well as results on the
analysis of generalized convex functions have been
of interest to many authors (Ansari et al., 2014; Lara
etal., 2021; Lara et al., 2022; Lara, 2022; Kagani et
al., 2022). Some different types of subdifferentials
were introduced in the literature. It was known that
different types of subdifferentials are perfectly
suited to a different class of functions, such as: the
convex subdifferential for convex functions
(Rockafellar, 1996), the Clarke's subdifferential for
locally Lipschitz continuous functions (Clarke,
1983), and the strong subdifferentials for strongly
quasiconvex functions (Lara, 2022; Kabgani et al.
(2022). Inspired from Lara et al. (2021, Kagani et
al. (2022), and Thinh et al. (2024), we present, in
this  work, new subdifferentials, namely
subdifferentials with degrees of freedom of
nonconvex functions, and then we state calculation
rules for such subdifferentials. Using obtained
calculation rules, we provide the necessary and
sufficient conditions for points to be solutions to
optimization problems. So, we also propose a class
of functions that are perfectly suited to
subdifferentials with degrees of freedom. Besides,
one way to define subdifferentials of a single-
valued mapping was based on normal cones to its
epigraph.

In this paper, we first introduce a new
generalized normal set as a generalization of
convex normal cones. After that, we establish
formulas for calculating such normal sets. These
formulas are basic for establishing calculation rules
for subdifferentials with degrees of freedom of
functions belonging to a class of new generalized
convex functions.

Throughout this paper, we always assume that
X is a Banach space with norm |-l and its
topological dual X*. Let C be a nonemptyset in X,
we define

0 ifxecC
Oc(¥): = {oo otherwise.
For a pair (x,x*) € X x X*, the symbol (x*,x)
indicates the canonical pairing between X and X™.
Let C be a nonempty subset of X. The relative
interior of C defined by
re (C:={x€C|3e>0:B.(x) naff (C) c C}
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where B, (x) is a ball of radius € and centered on x,
and aff (C) is the affine hull of C. The (convex)
normal cone to C at x € C is given by

N C):={x"eX | (x",x—x)<0Vx€C}.
Let f:X->R:=Ru{w}. The singular
subdifferential of f at x € dom f is defined by

0 f(x):= N(x,dom f).

2. Normal sets with degrees of freedom to
sets

Let C be a nonempty closed convex subset of
X. The mapping v: C X C —» R which satisfies (i)
v(x,x) = 0 forall x € C, and (ii) lim,_zv(x,x) =
0 for all x € C is called to be a like-distance
function on C.

Let @ #Qc X and let v:X x X = R be a like-
distance function on X. The v-normal set (or normal
set with degree of freedom) to Q at & € Q is defined
by

NY(x,Q):={x"e X" | (x",x —x) +v(x,X)
<0,vx € Q}.

If v(-,x) = 0 then NV (x, Q) reduces to the convex
normal cone to Q at x.

We now establish formulas for calculating of
v-normal sets to sets. In the the case of v(- x) =0
for all x € X, the following results reduce to the
exiting results in convex analysis.

Theorem 1. Let Q4, Q, be subsets of X with x € Q,
andy € Q,. Letv,,v,: X X X = R be like-distance
functions. Then we get
NY((%,7), Q1 X Qp) = N"1(X,Qq) X NV2(%, Q)
(1.1)

where v:X?xX2->R is defined by
v((x,y); (w,v)):=vi(x,u) +v,(y,v) for all
(x,v), (u,v) € X2
Proof. Take v = (v,v,) € X X X satisfying v €
NY((x,5), Q1 X Q,). By the definition, we get
((v1,v2), (,y) = (%, 7)) + v((x,¥), (X, 7)) <
0,V(x,y) € Q1 X Q,.
This is equivalent to
(v, x = %) +v1(x, %) + (v, y = V) + v (1, 7) <
0,Vx € O,y € Q. (1.2)
Taking y = y into account, we get

(v, x —x)+v(x,%) <0,Vx € Qy
which means that v; € NV1(x, Q).
Similarly, picking x = x in (1.2), we get

(V2,y =y +v2(1,7) <0,Vy €,
which implies that v, € NV2(y,Q,).
Thus, we have
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NY((x,y), 2 X Qz) € NV1(%, Q1) X NV2(y,Q3).
(1.3)

Otherwise, let wv; € NV1(%,Q,)
NV2(y,Q,). By the definition, we get
(v, x = %) +vi(x,x) <0,Vx € Qy

and v, €

and
<v2'y _37) + VZ(y'Y) <0,Vy € Q,.
It follows that
(v, X = X) + v (%, %) + (v, y = V) + v, (1, 7)
<0,vx € Qq,y €,
which is equivalent to
<(171, UZ)! (X, y) - (,f, )7)> + V((X, }’)» (-f' 37))
<0,V(x,y) € Qy X Q,.
This deduces that
(171, VZ) € NV((f;f); 'Ql X QZ)
which gives us the following relation
NY1(x, Q) X NV2(y,Q,) € NY((x,7), Q1 X Q).
(1.4)
It implies from (1.3) and (1.4) that (1.1) holds.
Corollary 2. Let Q4,Q, be subsets of X with x €
Q,andy € Q,. Let¥: X X X = Rbe alike-distance
function. Then, we get
NY((%,37),04 x Q;) = N”(%,Q4) X
N(x,Q;) (1.5)
where  v:X?xX2->R is defined by
v((x,y), (w,v)):=V(x,u) for all (x,y),(u,v) €
X2,
Proof. It directly implies from Theorem 1 with
vi(,u) =v(x,u) and v,(y,v) =0 for any
(x,u), (y,v) € X2
Theorem 3. Let Q4, Q, be convex subsets of X with
XEQ; NQ,. Letv:X XX — R be a like-distance
function satisfying v(-,x): X = R is concave on
Q,. Then, for any v € NV(x,Q, N Q,), there exist
1€{01} and v, € N(X, Q,),v, € N¥ (%, Q,)
such that (4, v,) # 0 and
Av =v; +v,. (1.6)
Proof. Take v € NV (i, Q; N Q,). By the definition,
we get
(v, x —x)+v(x,x) <0,Vx € Q; NQ,.
Set ©;:=Q; X[0,0) and 0,:= {(x,1) € Q, X
R | A< (v,x —x)+v(x,x)}. By the convexity of
Q4,Q, and the concavity of v(:,x), it exists that
04,0, are convex sets. Moreover, 0,0, form an
extremal system due to the fact that for arbitrarily
a>0,weget®; N (O, —(0,a)) = 7.

By using [Mordukhovich et al. (2014), Theorem
2.8], we find (w,y) € X X R separating ©; and 0,
in the sense that
w,x) +yA < (w,y) +vA,,V(x, 1) €
0,,V(y,4,) € 0,. (1.7
It is clear that y < 0. Indeed, if the opposite is that
y > 0, then picking (x,4,) = (x,1) and (y, 4;) =
(¥,0)in(1.7),we gety < 0. This is a contradiction.
Let’s consider the following two cases:
Case 1. y = 0. In this case, w # 0. Moreover, it
implies from (1.7) that

(w,x) <(w,y),Vx € Qy,y € Q,
which follows that w e N(x,Q,) and —w €
N(x,Q,) = NYV(x,Q,). Thus, the assertion (1.6)
holdswithA =0and v, = w,v, = —w.
Case 2. y < 0. For any x € Qq, taking (x,4,) =
(x,0) €®; and (y,1,) = (x,0) € O, into (1.7),
we obtain (w,x —x) < 0,Vx € O
which means that w € N(x,Q;). So

N(x,Q,). To proceed further, for any x € Q,,
picking (i, 0) € ©; and (x,(v,x — x) + v(x, X)) €
0, in (1.7), we get

w,x —x)+y({v,x —x) +v(x,x)) = 0.(1.8)
Dividing both sides of (1.8) by y, we get

w
<?+v,x—f>+v(x,f) < 0Vx € Q,.

_We
Y

which gives us that g + v € NY(%,Q,). Thus (1.6)
holds with v; = % v, = % +vand A = 1. Hence,

the proof is completed.
Theorem 4. Let Qq,Q, be nonempty convex
subsetsof X and x € Q; N Q,. Letv: X XX > R
be a like-distance function which satisfies v(-
,X): X = Risconcave on Q,. Assume that the basic
qualification condition (BQC) is satisfied
N(f' Q‘l) n [—N(f, 'QZ)] = {0}

Then we get

NY(x,Q, N Q,) = N(x, Q) + NY(%, Q).
Proof. Take v eNV(x,Q;NQ,). By using
Proposition 3, we find A4 € {0,1}, v; € N(x,Q,)
and v, € N7(x,Q,) such that (1, v;) # 0 and
Av=v,+v, If 21=0 then vy #0 and v, =
—v, EN(X,Q,). Thus 0 =#wv; € [-N(x, Q)] N
N(x, Q,) which contradicts to (BQC). So 1 =1.
Using Proposition 3 again, we find v; € N(x,Q,)
and v, € NV(x,Q,) such that v = v; + v, which
follows that

NY(x,Q; N Q,) © N(x,Q,) + NV (x,Q,).
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To show the opposite inclusion, we take v; €
N(x,Q,) and v, € NY(x,Q,). We have from the
definition that
(v, x —Xx) < 0,Vx € Q and (vy, x — X) +
v(x, %) <0,Vx € Q,.
Therefore, for any x € Q; N Q,, we get
(V1 + v, x—%)+v(x,%) <0

which implies that v, + v, € NV(X,Q; N Q,).
Thus, we get

NY(x,Q, N Q,) D N(x Q) + NV(x,Q,).
Hence, the proof is completed.

3. Subdifferential with degree of freedom of
functions

This section presents a new version of
subdifferential for functions, namely
subdifferential with degree of freedom of functions.
This is a generalization of the convex
subdifferential known in convex analysis.
Definition 5. Let v be a like-distance function X
and let f:X > R:= R U {}. The subdifferential
with degree of freedom (or v-subdifferential) of f
at x € dom f is defined by
0"f(x):={x"€X"| f(x) = f(%X) +(x",x —
x) +v(x,xX)Vx € dom f}.
Theorem 6. Let f:X > Rand v:X xX > R be a
like-distance function. Then we get

v
3V (Af)(x) = 102f(x) VA > 0,x € dom f
Proof. Let x € dom f,A1 > 0 and x* € dV(Af)(x).
We have by the definition that
Af(u) = Af(x) + (x*,u — x) + v(u,x)Vu
€ dom f
which is equivalent to

*

f = fx)+ <x7,u — x> +%v(u,x)‘v’u
€ dom f.

1
This means that 0 € dx” f(x)
Hence, the proof of theorem is completed.

We next provide computation rules for
subdifferential with degree of freedom of functions
as follows.

Theorem 7. Let fi,f>:X > Ri=RU {0} be
convex functionson X and letv : X x X - Rbea
like-distance function which is concave and non-
negative on dom f;. Assume that the following
qualification condition is satisfied at X € dom f; N
dom f, :

[—-0%f1(3)] N 0% f,(%) = {0}
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Then, we get
0"(fi + f2)(%) = 0" f1 (%) + 0f>(%).
Proof. Let v € 0V(f; + f,)(Xx). By the definition,
we get
filx) + f2(x) = f1(X) + fo(%) +{v,x — %) +
v(x,X),Vx € X. (1.9
We define the following sets
Ql: = {(.x,}ll,}{z) EXXRXxR | /’11 => fl(x)}
and
QZ: = {(X,Al,ﬂ,z) EXXRXR | AZ > fz(x)}.
Then by the convexity of f; and f,,Q, and Q, are
also convex. We define 7: (X x Rx R) x (X x
RXR) >R by 7((x1,24,B1), (2,45, 8,)): =
v(x4, x,) as a concave function due to the concavity
of~ v. We will show that (v,—1,-1)€
N7 (& (%), f2(3)), Q4 N Q).
Indeed, we get from (1.1) that (v,x —x)—
1A= f1(x) - 1(B - (X)) +
17((x' /1' ﬁ)' (f'fl(f)'fZ(f))) < O,V(x, ﬂ., ﬁ) €
Q. NQ, meaning that (v,—1,-1) €
N?((x, f1(%), f2(%)), 4 N Q,). Moreover, by
Corgllary 2, we get
NV((fffl(f)’fZ(f))l_ﬂl)
= NY((%, f1(X)), epi f1) x {0}
where V:XXRXXXR->R is define by
v((x,4), ¥, B)):=v(x,y). Furthermore, it is
obvious from the definition that
N((Z /(D). f(%)), 2z)
={(x"0,f) eX* xRxR
| (x*l B) € N((f,fz(f)), QZ)}
To proceed further, it is necessary to prove that
[-N(, f1(D), f2(2)), Q)]
NN (%A@, £0),0;)
={(0,0,0)}.
Indeed, let in the opposite that
(0,0,0) # (vq,v,v3)
€ [—N((f' f1(f):f2(f))191)]
NN((, (D), (), Q)
then v, = v3 = 0and v; # 0. By the definition, we
get
(—v1,x —x) < 0Vx € dom f; and (v{,x — X)
< 0Vx € dom f,
which imply that v; € (=3 f; (%)) N (0% f,(X)).
This contradicts to the assumption that
[—0°fi(X)] Nna*f,(x) = {0}. Therefore, by
using Theorem 4, we find elements (v;,—1,0) €
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NP((% f1(®), £(0)), Q) and  (v,,0,-1) €

N((x, f1(%), f2(%)), Q) such that

(v,—1,-1) = (v1,—1,0) + (v,,0,—1).
This follows that v = v; + v, with v; € 9V f; (%)
and v, € df,(x). Hence, the proof of the theorem
is completed.

We next introduce a new version of the
generalized convexity of functions as follows.
Definition 8. Let v be a like-distance function on
C c X and let C be convex. The function f:C - R
is called to be v-convex at ¥ € dom f if dom f is
a nonempty convex set and for any x,y € dom f
and @(-):= f(-) —v(-, x) is convex. f is called v-
convex on C if it is v-convex at any x € C.
Remark 9. f is 0 -convex on X if and only if f is
CONnvex.

It is known in convex analysis that the convex
subdifferential of convex functions at any relative
interior point of its domain are nonempty sets. We
now present a similar result for v-convex functions
and v-subdifferentials as follows.

Theorem 10. Let v be a like-distance function X.

Let f:X >R be a v-convex function. Then

0Vf(x) # @ forany x € re (dom f).

Proof. Fix x € re (dom f). Since f(:) —v(:, x) is

convex, there exists x* € d(f(:) — v(,x))(x)

which  means that f(u)—v(u,x)=f(kx)—

v(x,x) + (x", u —x)Vx € X.

This is equivalent to
fW=fx)+x"u—x)+vux)vx € X

which follows that x* € 3Y f (x).

4. Applications to optimization problems

The main goal of this section is to establish
necessary and sufficient condition for a
generalized solution to optimization problems.
We first introduce generalized solutions to the
optimization problems as follows.

Definition 11. Let v be a like-distance function X.
Let f:X —» Rand let X € dom f. Then x is called
v-minimizer of f if

f(x) = f(x) +v(x,x) forall x € dom f
Remark 12. (i) If v(x,x) > 0 for all x € dom f
then x is a global minimizer of f whenever x is v-
minimizer of f.

(i) If v(x,x) =€ Il x — x |l with some £ > 0, for
all x € dom f then f is (global) calm at x if and
only if X is v-minimizer of f.

(i) If v(x, %) = £ Il x — x 1| with some ¢ > 0, for
all x € dom f then f is global second order growth
at x if and only if x is v-minimizer of f.
Theorem 13. Let v be a like-distance function X.
Let f: X — R be a v-convex function. An element
X € dom f is a v-minimizer of f if and only if
0 €dvf(x)
Proof. Let x be v-minimizer of f. By the definition,
we have
f(x) = f(x)+v(x,x) forall x € dom f
This is equivalent to
f(x)=f(x)+(0,x —x)+v(x,x)Vx € dom f
This means that 0 € 9V f (x).
Example 1. Consider the function f(x) =e* —
1—xandv(x,y):= %(x — y)3 for any
x,y € R. Itis clearly that
0 € 3Vf(0) = {0}.
Thus, x = 0 is a v-minimizer of f due to Theorem
13. We will directly check that x is a v-minimizer
of f. Indeed, the function g(x):=e*—-1—x —
%x:" is convex because of g"'(x) = e* — x > 0 for

all x € R. Moreover, X = 0 is the unique solution
to the equation g'(x) = 0. This implies that x = 0
is a global minimizer of g which means that g(x) >
g(x) = 0 forall x € R. Therefore,
fx)=e*—1—-x2= f(x) +v(x,x) forall x
ER
which follows that x is a v-minimizer of f.

We close this section by establishing the
necessary and sufficient optimality condition for
the following problem:

minf(x) such that x € ¢ (1.1)
where C is a nonempty closed convex setand f is a
convex function on X with € ¢ dom f.

Let v:XxX—->R be a like-distance
function on C. A point x € C is called a v-global
solution to the problem (1.1) if

f(x) = f(x) +v(x,x)vVx € C.
Theorem 14. Consider the problem (1.1). Let v be
a like-distance function on C and f be v-convex on
C. Assume that x € C and the qualification
condition

[-0°f(DINN(x,C)={0} (1.2)
holds. Then X € C is the v-global solution to the
problem (1.1) if and only if
0€d"f(x)+ N(x,0C).
Proof. Let X be a v-global solution to the problem
(1.2). 1t is equivalent to that x is a v-minimizer of
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f + 6c. According to Theorem 13,x is a v-

minimizer of f + 6. if and only if 0 € 9V(f +

&¢) () which is equivalent to

0€dVf(x)+N(x,C)

due to Theorem 7 and the qualification condition

(1.2). Thus, x is v-global solution to the problem

(1.1) if and only if

0€dVf(x)+ N(x,C).

Hence, the proof is completed.

Remark 15. In the case of v(:,x) = O forall x € C,

Theorem 14 reduces to the exiting result in convex

analyis (see [Rockafellar (1996)]).
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