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Abstract

In this paper, we aim to extend the fixed point theorem in metric spaces to R™-b-metric
spaces. By constructing iterated sequences and proving that they are Cauchy sequences, we
have established and proven the Matkowski fixed point theorem in R™-b-metric spaces. In
addition, an example is presented to illustrate the obtained result.
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Tom tat

Trong bai viét nay, chiing tdi dat muc tiéu mo rong dinh li diém bat dong trong khong
gian metric sang khong gian R™-b-metric. Bang phuong phap xay dung dy lap va ching
minh dy lip 1a diy Cauchy, chung t6i da thiét Iap va chiing minh dinh 1y diém bat dong
Matkowski trong khong gian R™-b-metric. Ngoai ra, chung t6i dwa ra mot vi du dé ching
minh cho két qua dat duoc.

Tir khoa: Co, diém bat dong, khdng gian R™-b-metric.
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1. Introduction

In 1974, by replacing the range R, in the notion of a metric space with R}, Perov
introduced the notion of a R™-metric space (Perov, 1974). In 1993, Czerwik introduced the
notion of a b-metric space. It is defined by adding the constant s > 1 in the right of the triangle
inequality of the notion of a metric space. Before that, Coifman and Guzman (1970) mentioned
this notion with the name of quasimetric space. As a generalization of a b-metric space and a
R™-metric space, Boriceanu (2009) introduced the notion of R™-b-metric space. Many
authors have studied fixed point theorems in R™-b-metric spaces (Boriceanu, 2009).

The Banach contraction theorem, which is known as one of the basic theorems of
analysis, was given by Banach (1922). Because of its wide applications, authors have still been
studying and generalizing it in different directions. Many kinds of contraction maps have been
introduced. Boy and Wong (1969) introduced a new contraction map in metric spaces by
replacing the contraction constant k € [0,1) with the upper semi-continuous function from the
right Y on R, satisfying 0 < y(t) < t forall t > 0. After that, Matkowski showed that when
the condition of the upper semi-continuity of v is replaced by the condition of the increasing
of i in the theorem of Boy and Wong, the result of this theorem still holds (Matkowski, 1975).
For more details, we refer the reader to (Kannan, 1969; Ciric, 1974; Kirk & Shahzad, 2014).

First, we recall the following definitions to be used in this paper.

Definition 1.1. Let RT' ={x = (xq, ..., xp):x; E R, i =1,..,m},e = (1,1,..,1) € RT".
Forall x,y € R, x = (X1, .., X)), ¥ = (V1) ---» Vin), We denote

1) x L yifandonlyifx; <y; foralli =1, .., m.
(2)x <yifandonlyifx; <y;foralli=1,..,m.

(3) The norm [I-]l in R™* is called monotone with respect to the partial ordering < in R
ifforall x,y e RT', x <y, thenllx I<l y I.

Definition 1.2 (Perov, 1964). Let X be a nonempty set and a function d: X x X — R satisfy
forall x,y,z € X,

(1) d(x,y) =0ifand only if x = y.
) d(x,) = d(¥,%).
() d(x,y) 2d(x,z) +d(z,y).
Then d is called a R™-metric and (X, d, s) is called a R™-metric space.

Definition 1.3 (Czerwik, 1993, page 5). Let X be a nonempty set, s > 1 and a function
d:X x X - R, satisfy for all x,y,z € X,

(1) d(x,y) =0ifandonly if x = y.
(2) d(x,y) = d(y,x).
() d(x,y) < s(d(x,2) +d(z,y)).
Then d is called a b-metric and (X, d, s) is called a b-metric space.

Definition 1.4 (Boriceanu, 2009, Definition 2.1). Let X be a nonempty set, s =1 and a
functiond: X x X — R satisfy for all x,y,z € X,

Q) d(x,y)=0ifandonly if x = y.
(2) d(x,y) = d(y,x).
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B)d(x,y) 2s(d(x,z) +d(z,y)).
Then we have
(1) d is called a R™-b-metric and (X, d, s) is called a R™-b-metric space.
(2) The sequence {z,} is called convergent to z if 711_1)130 d(z,,z) = (0, ...,0), written by

lim z, = z.
n—-oo

(3) The sequence {z,} is called Cauchy if nglm d(zy, zm) = (0, ...,0).
(4) The R™-b-metric space (X, d, s) is called complete if every Cauchy sequence is a
convergent sequence.

Remark 1.5. (1) Some authors also call the R™-h-metric space as the generalized b-metric
space (Bazine, 2022) or the vector-valued b-metric space (Boriceanu, 2009).

(2) If m =1, then a R™-b-metric space (X,d,s) is a b-metric space in the sense of
Czerwik (Czerwik, 1998).

(3) If s =1, then a R™-b-metric space (X,d, 1) is a R™-metric space in the sense of
Perov (Perov, 1964).

Theorem 1. 6 (Kirk & Sims, 2001, Theorem 3.4). Assume that
(1) (X, d) is a metric space and a function ¥: R, — R, is such that
(a) ¥ is increasing, that is, for all x < y implies ¥/(x) < Y (y).
(b) Forallt e R, , %im Y"(t) = 0.
(2) Themap f:X — X satisfies for all x,y € X,
d(fx, f(»)) < ¥(d(x, ).
Then f has a unique fixed point x* and lim f™x = x*, forall x € X.
n—-oo
In this paper, we aim to extend a fixed point theorem in metric spaces to R™-b-metric
spaces. By constructing iterated sequences and proving that they are Cauchy sequences, we

have established and proven the Matkowski fixed point theorem in R™-b-metric spaces. In
addition, an example is presented to illustrate the obtained result.

2. Main results
First, we establish Matkowski's fixed point theorem in R™-b-metric spaces as follows.
Theorem 2.1. Assume that

(1) (X,d,s) isa R™-b-metric space and a function : RT* — R is such that
(a) ¥ is increasing, that is, for all x < y implies ¥ (x) < Y (y).
(b) For all t € R,

rllilgown(t) = 0. (2.2)
(2) The map f:X — X satisfies for all x,y € X,
d(fx, f(¥)) 2P, y)). (2.2)

Then f has a unique fixed point x* and lim f™x = x*, forall x € X.
n—oo

70



Dong Thap University Journal of Science, Vol. 14, No. 5 (2025): 67-74

Proof. From (2.1) we deduce that lim y"((1,...,1)) = (0, ...,0). Then there exists n,
n—-oo
such that

Pro((L D) < (522 (2.3)
Let x€X. Put g=f™ and put x,, = g™(x) for all meN. By (2.2) we deduce
A, Xm) = d (g™(g(0)), g™ (X)) < -+ < P (d(g(x), 1)), (24)

Taking the limitas m — oo in (2.4), we get lim d(x,41, %m) = (0, ...,0). So there exists m,
m—-oo
such that for all m > m,,

A1, %m) < (35 35) (25)

2s’ """ 2s

We denote Bx,r] ={y € R™:d(x,y) <r} where x € R™,r € R,. Now for each
u € B[xy,, 1] and by (2.3) we have

d(9@),g(xm,)) = d(fro@), " (xm,))

= lpno (d(u, Xmo)) (26)
2P, .,1)

1 1
<(X,..0).
2s 2s

We first show that g has a fixed point x*. Indeed, let u € B[xy,,,1]. By (2.5) and (2.6)
we have

d(g(w), xmo) <s [d (g(u) g(xm0 ) + d(g(xmo),xmo)]

[(% 30 * Gz
D).

S0, g(u) € B[xy,,, 1]. Then, we conclude that g: B[x,,,, 1| — B[x,,, 1]. Foralln,m = m,
we find that

d(anxm) = S[d(xn'xmo) + d(xmo’xm)]
<s[(L,..,1) + (1, ..,1)] 2.7)
= (2s,...,25).

By (2.2) we find that for m > n > m,,
d(xn, Xm) = d(g"(x), g™ (x))
=d(g" g™ (x), g™ Mg (x))

(g e )4,
=d (f(n_mO)nO (xmo)’f(m_mO)nO (Xmo))
=< ll) (d (f(n_mO)no_l(xmo)'f(m_mO)no_l(xmo)))
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= w(n—mo)"o (d (xmo’f(m—n)no (xmo))>

= p(-mo)ng (d(xmo, xm—n+m0))

< Pprmodno((2s, ...,25)).
Taking the limit as n,m — oo in (2.7) and using (2.1) we find that lim d(x,,x,;,) =
(0, ...,0). So {x,,} is a Cauchy sequence in (X,d). Since (X,d) is corg'ﬁgt:, there exists
Wlli_r)rgoxm =x".

From the assumption of i we find that . (gi+m 0+)1/1(t) = (0, ...,0). Then for all {y,} c X,

lim y, =y, we have

n—oo
lim d(f (), f)) = limb(dGn, 1) = (0, ..,0).
Then we get
lim £ () = f () (2.8)
We have that
lim g(y,) = lim fo(yn) = fo(y) = g). (2.9)
Then
X" = T}liiréoxm = T}liiréoxmﬂ = 7}li_r)réog(xm) =gx").

So g has a fixed point. From (2.2) we have

dx, g"(f(x))) =d@m "), g™ (x)))
=d(fmm(x"), M (f(x))) (2.10)
< Y™ (d(x*, f(x)))

and

dx*,g"(x) =d(@mx"),g™x))
= d(f"™(x"), fM(x)) (2.11)
< yPpmo™(d(x", x)).

Taking the limit as m — oo in (2.10) and (2.11) we get
lim G, g™(f()) = lim d(x", g™ (@) = (0, ..,0).
Then n!li—r)lgogm('f(X)) = nlli_r)rgogm(x) = x"in (X,d). By (2.10) we have
fG) = lim f(g™()) = lim f(fra™(x)) = lim g™ (f(x)) = x".
This proves that x* is a fixed point of f.

Next, we prove the uniqueness of fixed points of f. On the contrary, let x* and y* be
two distinct fixed points of f. Then d(x*,y*) > (0, ...,0). Therefore,

d(x*,y") =d(f(x), fr)) L P(dx",y")) < d(x*,y).

It is a contradiction.
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Finally, we show that lim f™(x) = x*. Note that lim g™(y) = x* for all y € X. For
each n € N, there exists [,, sunc_r;oi)hat n = l,ny + n, with gl;mrn <ny—1.50
fr(x) = flnotn(x) = g (f ™ (x)).
Fixr, =r € [0,ny — 1]. Then

lim fino*7(x) = Jlim g (fr(x)) = x*.

ln—)oo
It implies that lim f™(x) = x*.
n—-oo

From Theorem 2.1, we infer the following corollaries.
Corollary 2.2 (Kirk & Shazad, 2014, Theorem 12.2). Assume that

(1) (X,d,s) is a b-metric space and a function ¥: R, — R, is such that

(a) y is increasing.

(b) Forall t € Ry, Aim Y"(t) =0.

(2) The map f:X — X satisfies for all x,y € X,

d(f(x), f() = ¥(d(x,y)).

Then f has a unique fixed point x* and for all x € X, r{im f(x) = x".
Corollary 2.3 (Kirk & Sims, 2001, Theorem 3.4). Assume that

(1) (X, d, s) is a metric space and a function y: R, — R, is such that

(a) y is increasing.

(b) Forallt € Ry, lim y™(t) = 0.

n—-oo
(2) The map f:X — X satisfies forall x,y € X,
d(f(x), f() = Y(d(x,¥)).
Then f has a unique fixed point x* and for all x € X, lim f™(x) = x™.
n—-oo

Now, we give an example to illustrate the obtained result.
Example 2.4. Assume that

(1) X =[0,o) and forall x,y € X,

d(x,y) = (lx =y |x —yI*).

(2) Afunction :[0,00) X [0,00) — [0, ) X [0, o) satisfies

e = (T 1y

(3) Amap f:[0,0) = [0, o) satisfies

), for all x,y € [0, o).

X
flx) = Trx for all x € [0, ).

Then f has a unique fixed point x* = (0,0).
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Proof. We have (X, d, 2) is a complete R%-b-metric space. Since h'(t) = (1++)2

L,t € [0, ), then his increasing. It implies that 1 is increasing. Moreover, we have

1+t
X y )

, = (0,0).

1+nx 1+ny ©.0)

where h(t) =

lim Y™ (x,y) = lim (
n—oo n

—00

For all x,y € X, we have
2

d(f(x), f()

| x y x y
1+x 1+yl'l1+x 1+y
2

() ()

( x—yl*  |x—y? )
T\L+ -y 14— yl?

= YP(d(x,y)).
By Theorem 2.1, we have f has a unique fixed point x* and Ai_r&fn(x) = x" for all x € X.
For x = (1,1), then %ijgof”(l,l) = g?o ( ) = (0,0). Therefore, x* = (0,0) is a
unique fixed point of f.

)

A

A

1 1
n+1’n+1
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