
 

Dong Thap University Journal of Science, Vol. 14, No. 02S (2025): 12-21 

12 

 

 

DOI: https://doi.org/10.52714/dthu.14.02S.2025.1635  

 

A COMPUTER ALGEBRA APPROACH FOR VERIFYING ISOMORPHISM  

OF LIE ALGEBRAS 

Ta Thien Quang1,2 and Nguyen Thi Mong Tuyen3* 

1Vietnam Australia International School, Vietnam 

2Master Student, Ho Chi Minh City University of Education, Vietnam 

3Faculty of Mathematics-Information Technology Teacher Education, Education School, 

Dong Thap University, Cao Lanh 870000, Vietnam 

*Corresponding author, Email: ntmtuyen@dthu.edu.vn 

Article history 

Received: 29/4/2025; Received in revised form: 17/7/2025; Accepted: 27/7/2025 

Abstract 

This paper proposes a computer algebra method for verifying the isomorphism of 

finite-dimensional Lie algebras over the complex field. Afterwards, an example is analyzed 

to demonstrate the suggested method. Finally, its efficiency is shown through applications. 

Keywords:  Isomorphism verifying, Lie algebras, Maple. 

 

 

 

 

 

 

 

 

 

Cite: Ta, T. Q., & Nguyen, T. M. T. (2025). A computer algebra approach for verifying 

isomorphism of Lie algebras. Dong Thap University Journal of Science, 14(02S), 12-21. 

https://doi.org/10.52714/dthu.14.02S.2025.1635  

Copyright © 2025 The author(s). This work is licensed under a CC BY-NC 4.0 License. 

https://doi.org/10.52714/dthu.14.02S.2025.1635
https://doi.org/10.52714/dthu.14.02S.2025.1635


 

Dong Thap University Journal of Science, Vol. 14, No. 02S (2025): 12-21 

13 

 

MỘT CÁCH TIẾP CẬN ĐẠI SỐ MÁY TÍNH ĐỂ KIỂM TRA ĐẲNG CẤU  

CỦA CÁC ĐẠI SỐ LIE 

Tạ Thiên Quang1,2 và Nguyễn Thị Mộng Tuyền3* 

1Trường Tiểu học, Trung học Cơ sở và Trung học Phổ thông Việt Úc 

2Học viên Cao học, Trường Đại học Sư phạm Thành phố Hồ Chí Minh, Việt Nam 

3Khoa Sư phạm Toán – Tin, Trường Sư phạm,  Trường Đại học Đồng Tháp, Việt Nam 

*Tác giả liên hệ, Email: ntmtuyen@dthu.edu.vn 

Lịch sử bài báo 

Ngày nhận: 29/4/2025; Ngày nhận chỉnh sửa: 17/7/2025; Ngày duyệt đăng: 27/7/2025 

Tóm tắt 

Trong bài báo này, chúng tôi đề xuất một phương pháp đại số máy tính để kiểm tra 

đẳng cấu giữa các đại số Lie hữu hạn chiều trên trường phức. Sau đó, một ví dụ được phân 

tích cụ thể để minh họa thuật toán. Cuối cùng, hiệu quả của phương pháp được trình bày 

thông qua một số ứng dụng. 

Từ khóa: Đại số Lie, Kiểm tra đẳng cấu, Maple. 
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1. Introduction 

One of the stages of classifying Lie algebras is to verify isomorphism of classified Lie 

algebras. For instance, the problem of classifying n -dimensional Lie algebras proceeds in 

two stages: (1) construct a list L consisting of n -dimensional Lie algebras, and (2) test 

isomorphism of Lie algebras in L. Thus, testing isomorphism of Lie algebras is a significant 

challenge. 

Theoretically, two isomorphic Lie algebras have the same invariants (e.g., the 

dimension of the center, ideals in the derived/lower central series). However, the converse is 

not true in general. For two Lie algebras sharing the same invariants, it is generally 

impossible to determine whether they are isomorphic. Therefore, a natural way is to apply 

computer algebra to test isomorphism of Lie algebras. 

In the relevant literature, the first authors considering the problem of testing 

isomorphism of Lie algebras from a computer algebra viewpoint are Gerdt and Lassner 

(1993). The authors translate the isomorphism conditions of Lie algebras into a system of 

polynomial equations. Groebner basis is then used to solve the latter problem. However, 

since the complexity of computing Groebner bases is very costly, this method is impractical 

when the dimensions of the input Lie algebras exceed 6. Moreover, a disadvantage of 

Groebner basis technique is that it is almost inapplicable for parametric Lie algebras. 

It is known that the significant advancements in computer science has provided many 

effective tools for mathematics. In particular, one interesting tool for solving a polynomial 

system is the so-called triangular decomposition. Roughly speaking, triangular 

decomposition is a way of solving systems of polynomial equations that resembles the well-

known Gaussian Elimination in Linear Algebra. Following the method of Gerdt and Lassner 

(1993), we also rewrite the isomorphic conditions of Lie algebras into polynomial systems. 

The triangular decomposition technique is then used instead of Groebner bases to solve these 

systems. 

This paper is structured into five sections. This introduction presents the problem. 

Section 2 introduces the theory of triangular decomposition of polynomial systems. Then, 

Section 3 presents the main result of the paper with applications in Section 4. The final 

section contains some concluding remarks. 

2. Triangular decomposition of polynomial systems 

This section briefly recalls the so-called triangular decomposition. For more details of 

the theory of triangular decomposition, we refer to Chen (2011), Chen and Maza (2012). In 

this section, k is a field with algebraic closure .K  The notation  k x  denotes the 

polynomial ring  1, , nx xk  with ordered variables  1, ,  nx x= x  and 
1 .nx x   

Here, the notation i jx x  means that ix  is less than jx , as in the case where a  is less than 

b  in the lexicographic order. 

Let  k x \ kp , i.e. p  is a non-constant polynomial. The greatest variable of p  is 

called the main variable of p  and denoted by ( )mvar p . If ( )mvar
i

p x= , we can 

consider p  as a univariate polynomial in i
x , i.e.,   1 1, , i ip x x x−k . Then, the leading 
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coefficient and leading monomial of p  are called the initial and the rank of p  which are 

denoted by ( )init p  and ( )rank p , respectively. 

For  k xF  , we denote by F  the ideal in  k x  spanned by F , and by ( )V F

the zero set (solution set) of F  in .n
K  

Let  k xI   be an ideal. A polynomial  k xp  is called a zerodivisor modulo I  

if there exists  k xq  such that p I  and q I  but pq I .  If p  is neither zero nor 

zerodivisor modulo I  then p  is called regular modulo I .  For  k xh , the saturated 

ideal of I  with respect to h  is an ideal in  k x  as follows: 

  .k x  :  such that : : mI q m q Ih h =      

A subset  k x \ kT   consisting of polynomials with pairwise distinct main 

variables is called a triangular set. For a triangular set  ,k xT   the saturated ideal of T ,  

denoted by ( )  sat T  k x ,  is defined as follows: if T =  then ( )  sat 0T =  is the 

trivial ideal. Otherwise, it is the ideal : TT h
 where T

h  is the product of the initials of the 

polynomials in .T  The quasi-component of T  is ( ) ( ) ( ): \ .TW T V T V h=  

Now, we turn to the main idea of triangular decomposition of polynomial systems. 

The most important object is the regular chain since it is the output of an algorithm to 

compute a triangular decomposition of polynomial systems. 

Definition 2.1 (Regular chain). A triangular set  k xT   is called a regular chain if: 

(1) T = ; or 

(2)  max
\T T , where 

max
T  is the polynomial in T  with maximum rank, is a regular 

chain and ( )init
max

T  is regular with respect to  ( )maxsat \ .T T  

Definition 2.2 (Triangular decomposition). Let  k xF   be a finite set. A finite 

subset  1, , eT T  consisting of regular chains of  k x  is called a triangular decomposition 

of ( )V F  if ( ) ( )
1

.
e

i

i

V F W T
=

=  If ( ) ,V F =  i.e., system F  has no solutions in ,n
K  then 

the triangular decomposition of ( )V F  is .  

For a polynomial system  : ,F R = k x  Chen and Maza (2012) presented the 

algorithm ( )FTriangularize  to compute a triangular decomposition of ( ) .nV F  K  In 

particular, this algorithm was implemented in Maple using the command 

( ),F RTriangularize  from the RegularChains library. 

Example 2.3. Consider the following system: 
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2

2

2

1

1

1.

x y z

x y z

x y z

 + + =


+ + =
 + + =

 ( )2.1  

According to Cox et al. (2015), the Groebner basis with respect to lexicographic order 

of ideal  2 2 21, 1, 1 , ,x y z x y z x y z x y z+ + − + + − + + −   reduces to the fact that 

( )

2

2 2

2 4 2

6 4 3 2

1 0

0
2.1

2 0

4 4 0.

x y z

y y z z

yz z z

z z z z

 + + − =


− − + =
 

+ − =
 − + − =

 

Now, we set    2 2 2: 1, 1, 1 , , .F x y z x y z x y z x y z= + + − + + − + + −   Then, 

( )FTriangularize  returns four regular chains as follows: 

       2

1 2 3 4, , 2 1 , , , 1 , , 1, , 1, , .T x z y z z z T x y z T x y z T x y z= − − + − = − = − = −  

Such four regular chains have 1,
iTh =  so ( ) ( ) ( ) ( )\ .

ii i T iW T V T V h V T= =  Since 

( ) ( )
4

1

,i

i

V F W T
=

=  the solution set of ( )2.1  is divided into the solution sets of 

2

0 0

0 0

2 1 0, 1 0,

0 1 0

1 0 0

0, 0.

x z x

y z y

z z z

x x

y y

z z

− = = 
 

− = = 
 + − = − = 

= − = 
 

− = = 
 = = 

 

Remark 2.4. As we can see in Example 2.3, Groebner bases are not necessarily 

triangular sets. Consequently, using a Groebner basis to construct isomorphisms is much 

more difficult, and in general, may be impossible. 

3. The main result 

This paper presents two main contributions: a theoretical background for testing the 

isomorphism of complex Lie algebras and an algorithm to perform the test. 

Let  1span , , nL x x=  and  1span , , nL y y =   be n -dimensional complex Lie 

algebras with structure constants 
k

ija   and ,k

ijb   respectively. Here,  1span , , nx x

denotes an n -dimensional vector space with basis  1, , .nx x  Thus, we have 

( ), , , 1 .k k

i j ij k i j ij kx x a x y y b y i j n   = =        
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Assume that : L L →  is a linear morphism whose matrix with respect to the two 

bases  1, , nx x  and  1, , ny y  is as follows: 

  ( )
11 1

1

Mat .

n

n

n nn

z z

z z



 
 

= 
 
  

 

Then we have 

( ) ( ) ( )
1 , 1 1 1

, , , .
n n n n

s k

i j ik jl kl s i j ks ij sL L
s k l s k

x x z z b y x x z a y  


= = = =

   
   =  =       

  
     

The linear morphism   is a Lie algebra isomorphism if and only if 

( ) ( ) ( )

 

 
1 , 1

, , , 1 ,

det 0,

0, 1 ,1 ,

1 det 0.

i j i jL L

n n
k s

ks ij ik jl kl

k k l

x x x x i j n

z a z z b i j n s n

z

  







= =

    =       





− =     

 
 −  =

 
 

Consider ,ijz z  as variables. Note that the above system contains at most 

1
2

n
n
 

+ 
 

 polynomials of degree at most 1.n+  Denote by   : ,ijz z =  z  the ring of 

polynomials in 1
2

n
n
 

+ 
 

 variables with coefficients in .  Let 

 ( )  
1 , 1

,1 det :1 ,1
n n

k s

ks ij ik jl kl

k k l

F z a z z b z i j n s n
= =

 
= − −       
 
 z  ( )3.1  

be a polynomial system in  .z  With these notations, the main result of the paper can be 

formulated as the following theorem. 

Theorem 3.1. L L  if and only if ( )( )FTriangularize z  is non-empty. 

Proof. As seen above, two n -dimensional complex Lie algebras L  and L  are 

isomorphic if and only if the polynomial system ( )F z  admits a solution 
2 1,n +z  i.e., 

( )( )
2 1.nV F +  z  By Definition 2.2, this is equivalent to ( )( )FTriangularize z  

being non-empty.  

Using Theorem 3.1, we can summarize the procedure to test isomorphism between 

two n -dimensional complex Lie algebras by an algorithm as follows: 
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- Step 1. Set    11 1 1: , , , , , , , .n n nnR z z z z z= =   z  

- Step 2. ( )( ):V F= Triangularize z    //command ( )( ),F RTriangularize z . 

- Step 3. If V   then L L , otherwise .L L  

4. Experimentations and applications 

4.1. An example 

We now present an example with detailed computations to demonstrate how Theorem 

3.1 can be applied. 

Example 4.1. Consider two 4-dimensional complex Lie algebras as follows: 

 

 
1 2 3 4 2 3 1 2 4 2 3 4 3

1 2 3 4 2 3 1 2 4 3 3 4 2

span , , , :[ , ] ,[ , ] ,[ , ] ,

span , , , :[ , ] ,[ , ] ,[ , ] .

L x x x x x x x x x x x x x

L y y y y y y y y y y y y y

= = = = −

 = = = − =
 

We claim that .L L  In fact, assume that : L L →  is a Lie algebra isomorphism 

with matrix 

  ( )

11 21 31 41

12 22 32 42

4

13 23 33 43

14 24 34 44

Mat .

z z z z

z z z z

z z z z

z z z z



 
 
 = 
 
 
 

 

By computations, the system ( )    11 14 41 44, , , , , , ,F z z z z z =z z  in 

( )3.1  consists of twenty-two polynomials as follows: 

( )

  14 24 34 12 23 13 22 12 33 13 32 12 43 13 42

12 24 14 22 12 34 14 32 12 44 14 42 13 24 14 23 13 34 14 33

13 44 14 43 22 33 23 32 11 23 34 24 33 12 22 34 24 32

1 det , , , , , , ,

, , , , ,

, , ,

z z z z z z z z z z z z z z z z

z z z z z z z z z z z z z z z z z z z z

F z z z z z z z z z z z z z z z z z z

−  − − −

− − − − −

= − − − − − − −z 13

22 43 23 42 21 22 44 24 42 23 23 44 24 43 22

32 43 33 42 31 32 44 34 42 33 33 44 34 43 32

, .

, , ,

, ,

z

z z z z z z z z z z z z z z z

z z z z z z z z z z z z z z z

 
 
 
 
 
 − − − + − −
 
 − − − − − + 

 

Then, the ( )( )FTriangularize z  algorithm, which computes a triangular decomposition 

of ( )( ) ,V F z  returns a unique regular chain as follows: 

( )

( )

2 2

33 44 23 11 33 44 23 12 13 14 21 42 43 44 23

2

22 23 44 24 31 43 44 42 33 32 33 41 34 44

4 1, 2 , , , , ,
.

, , , , , 1

z z z z z z z z z z z z z z z z
T

z z z z z z z z z z z z z z

 + − + − 
=  

− − + + +  

 

Since ( )( )FTriangularize z  is non-empty, it follows from Theorem 3.1 that 

.L L Furthermore, 
2 2

33 44 234T z z zh =  implies 

( )( ) ( ) ( ) ( ) ( ) ( )2 2

33 44 23\ 4 .\TV F W T V T V h V T z zV z= = =z  
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Thus, the polynomial system ( ) 0F =z  is equivalent to the following system: 

( )

( )

12

24

34

2 2

33 4

2 2

33 44 23

11 33 44 23

13

14

21 42 43 44 23

22 23 44

31 43 4

4 2

4 42 33

32 33 41

2

44

3

0

0

0

0

0

0

0

0

0

0

0

0

4 0

4

1

.

1

2

z z z z

z z z z

z

z

z z z z z

z z z

z

z

z

z z z z

z z z

z

z

z z z

 =


=
 =


=
 =


=


=
 =

+

−

+


 =


=
 =


=
 

−

−

− +

+

+

 

Solving this system yields the following isomorphism: 

 

2 0 0 0

0 0
,

0 1 1 0

0 0 0

i

i i

i



 
 

−
 =
 
 
 

 

where i  is the imaginary unit. 

4.2. Applications 

From historical point of view, only full classification of solvable Lie algebras up to 

dimension 6 has been presented in the literature by Snobl and Winternitz (2014). Here, “full” 

means that they are classifications up to isomorphism. The same problem is still open 

beyond dimension 6. 

According to Mubarakzyanov (1966), the nilradical ( )N L  of a Lie algebra L  over a 

field of characteristic zero always satisfies ( )2dim dim .N L L  Therefore, 

( )  dim 4,5,6,7N L   if dim 7.L =  Hindeleh and Thompson (2008), Parry (2007) and 

Gong (1998) respectively classified 7-dimensional solvable Lie algebras L  with 

( )  dim 4,6,7 .N L   The case ( )dim 5N L =  remains open. Our contribution is the 

classification up to isomorphism all 7-dimensional complex solvable Lie algebras with 5-

dimensional nilradicals (Le et al., 2023). This result completes the classification of complex 

solvable Lie algebras up to dimension 7. 

5. Conclusion 

This paper has presented an effective algorithm for testing isomorphism of finite-
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dimensional complex solvable Lie algebras. This algorithm has been applied to solve a 

fundamental problem in the theory of Lie algebras. In a forthcoming paper, an algorithm will 

be introduced for the more complicated case: testing isomorphism of parametric Lie 

algebras. 
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