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Abstract 

In the food industry, the need to assess and predict the ripening process of fruits plays 

an important role in optimizing storage and transportation strategies, ensuring the product 

quality when reaching consumers. The study proposes a method using microwave spectrum 

based on vector network analyzer combined with machine learning models. It evaluates 

numerous machine learning models and predicts the number of days required for an unripe 

banana to semi ripe and then ripe banana. Data is collected through scattering parameters, 

including reflection parameter S11 and transmission parameter S21, in the frequency range 

from 1 GHz to 5 GHz. The S-parameters are processed, analyzed and extracted characteristic 

data and fed into the machine learning models to perform the comparison and prediction 

process. 
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Tóm tắt 

Trong ngành thực phẩm, nhu cầu đánh giá và dự đoán quá trình chín của trái cây đóng 

vai trò quan trọng trong việc tối ưu hóa các chiến lược lưu trữ và vận chuyển, đảm bảo chất 

lượng sản phẩm tốt nhất khi đến tay người tiêu dùng. Nghiên cứu đề xuất một phương pháp 

sử dụng phổ vi sóng dựa trên máy phân tích mạng vectơ (VNA) kết hợp với các mô hình học 

máy. Phương pháp này được sử dụng để đánh giá giữa nhiều mô hình học máy và dự đoán số 

ngày cần thiết để một quả chuối chưa chín chuyển sang chuối chín một nửa và sau đó là chín. 

Dữ liệu được thu thập thông qua các tham số tán xạ, bao gồm tham số phản xạ S11 và tham 

số truyền S21, trong dải tần số từ 1 GHz đến 5 GHz. Các tham số S được xử lý, phân tích và 

trích xuất dữ liệu đặc trưng và đưa vào các mô hình học máy để thực hiện các quy trình so 

sánh và dự đoán. 

Từ khóa: Dự đoán độ chín, học máy, máy phân tích mạng vectơ. 
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1. Introduction 

In the food industry, fruit quality always plays an important role in the food supply 

chain. In order to ensure the sustainability of the supply-demand relationship between 

producers and consumers, fruits, when reaching consumers, must meet the needs of flavor, 

color, and nutritional value (Bahinipati, 2014). Providing unripe fruits will reduce the inherent 

nutrition and flavor of the fruit, overripe fruits will change the appearance and chemical 

composition of the fruit in a negative direction, affecting the quality of the product and the 

taste of consumers. This error not only affects the health of consumers but also seriously 

affects manufacturers’ reputation and profits. Therefore, evaluating and predicting the ripeness 

of fruits is extremely necessary to find a method of preservation and calculate reasonable 

transportation time. 

Traditional methods for assessing and predicting fruit ripeness rely on human senses 

such as observing color, touching to check firmness, etc (Bashir et al., 2020). However, these 

methods lack accuracy, do not ensure consistency in test results, and are not suitable for large-

scale production models due to the time and effort required. Some types, such as watermelon 

and orange, do not have obvious changes in firmness or color to have enough information to 

assess fruit stages (Narendra & Hareesh, 2010). Therefore, this study proposes a scientific 

method that is cost-effective, non-invasive, and more accurate when using microwave signals 

to assess and predict fruit ripening time. 

2. Theoretical overview 

For foods with high water content and moisture such as fruits, dielectric properties are 

one of the most effective indicators of evaluation, because water has a very high dielectric 

constant and constitutes a large proportion of the fruit structure. Therefore, changes in quality, 

ripeness, or freshness will lead to significant alterations in the dielectric properties of the 

sample. 

 Research based on dielectric properties has been of interest for many years (Nelson, 

2006; Venkatesh & Raghavan, 2004). Among them, microwave sensors stand out compared 

to other technologies due to a series of advantages such as non-invasive, non-destructive, fast 

measurement, and the ability to penetrate deeply into the material structure. These 

characteristics are particularly important among fruits, which are soft, easily damaged, and 

difficult to maintain shape during measurement. 

Not only does it help evaluate dielectric properties effectively, but microwave 

technology has also been proven to be sensitive to biochemical and microbiological processes 

in food. A typical example is the SEQUID project (Kent et al., 2007), showing that changes 

such as protein degradation, alteration of water structure, and formation of polar compounds 

all cause significant changes in the dielectric spectrum, especially in the microwave frequency 

range. Due to these characteristics, the application of microwave technology in experiments 

evaluating ripeness, freshness, and food quality is becoming increasingly popular (Clerjon & 

Damez, 2007; Guo et al., 2010; Pacquit et al., 2006; Schimmer et al., 2008).  

In 2023, a study examined the quality of mangosteen by using a microwave method 

combined with a dual-ring microstrip resonance sensor to detect the quality between normal 

mangosteen flesh, yellow resin-leached mangosteen, and transparent mangosteen, based on 

the difference in dielectric constant (Muvianto et al., 2023). This study successfully classified 

the quality based on certain value ranges (2.98-3.28) compatible with each type of mangosteen 

flesh without invasiveness and sample destruction. Another study by Van Lic used a 

microwave method combined with machine learning methods (ANN, KNN) to classify fruits 

and ripeness (Tran et al., 2023). The study had an accuracy of up to 98.75% - 99.75% in fruit 
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classification and 98.4%-96.6% in ripeness classification. Syaiful Redzwan and his colleagues 

also used the microwave method combined with the Split Ring Resonator (SRR) sensor to 

assess the quality between fresh and aged fruits (Redzwan et al., 2018). The results showed 

that the use of microwaves is capable of quickly assessing the quality and ripeness of fruits, 

although the research is still limited to analyzing non-linear data. A study by Leekul on the 

classification of sweet and unsweet tangerines based on microwave signals obtained by a 

multi-array antenna operating in the 2.5 GHz frequency range (Leekul et al., 2016). The system 

showed an accuracy of up to 95% and the potential in classifying tangerines by flavor. Navid 

Ghavami's study showed the applicability of microwave signals to algorithms for recognizing 

seeds inside lemons, grapefruits, and classifying seeded and seedless fruits (Ghavami et al., 

2019). Africa highlights the importance of integrating technology into the agricultural sector, 

especially for fruit ripeness detection and quality assessment (Africa, 2020). Traditional 

methods that rely on physical attributes such as shape, color, and texture are prone to human 

error and lack consistency. To address this, the study presents various modern approaches, 

including machine learning, computer vision, deep learning, image illumination, Faster-CNN 

and gas chromatographic systems for detecting ethylene gas. A study by Leekul presented a 

microwave sensor operating at 2.45 GHz using a dual patch antenna system to detect internal 

defects in fruits, with oranges as the test case (Leekul et al., 2016b). By analyzing the mean 

and standard deviation of S-parameter magnitudes at different positions, the system 

successfully identified granulated oranges. The sensor, designed to match sweet oranges and 

arranged in a perpendicular configuration, showed clear variations in reflected and coupled 

signals, demonstrating its potential as a low-cost solution for fruit quality classification. The 

study of Richard Torrealba-Melendez investigated the dielectric properties of litchi fruit using 

the open-ended coaxial probe method across the frequency range of 0.5-20 GHz at microwave 

frequencies over a 3-day storage period at room temperature (~24°C) (Torrealba-Melendez et 

al., 2020). Results showed that the dielectric properties increased with storage time. When 

measured at different temperatures (24, 30, 40 and 50°C), the dielectric constant decreased 

with rising temperature in the 0.5-5 GHz range but increased at higher frequencies. The loss 

factor exhibited a U-shaped pattern-rising at frequencies above 2 GHz but generally decreasing 

with temperature. A study by Garvin presents a novel microwave imaging (MWI) system 

designed to determine watermelon ripeness (Garvin et al., 2023). The system features a 

circular array of 10 Coplanar Vivaldi antennas, offering wide bandwidth, high gain, and 

efficient signal penetration. Automated channel switching enables rapid S-parameter 

collection and fast image generation. Eight watermelon samples with different ripeness levels 

and origins were scanned, and the resulting images were compared with physical cross-

sections and sugar concentration measurements. The results showed clear differences in image 

characteristics based on ripeness, confirming the system’s effectiveness in assessing 

watermelon maturity non-destructively. 

This study proposed a method for predicting banana ripening stages based on 

microwave spectrum combined with many machine learning algorithms, aiming at a non-

destructive, fast and effective solution for predicting banana ripening status. 

3. Method and Experiment Design 

3.1. Method 

The LiteVNA-64 vector network analyzer (VNA) is a compact device used for 

transmitting and receiving microwave signals, which was employed to develop a practical on-

body measurement system using wireless communication circuits, non-invasive sensors, and 

nano VNAs (Elmiladi et al., 2024). The frequency range from 1 GHz to 5 GHz was chosen in 

this study because it achieves an optimal balance between wave penetration depth and 
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measurement resolution (Meng et al., 2018). In this frequency range, microwave signals can 

penetrate the outer skin of the fruit and interact with the water content as well as the internal 

structure, two key factors that reflect the ripening process. Additionally, this frequency range 

is suitable for the operation of VNA, which helps perform S-parameter measurements 

accurately. The antenna, which is made of an open-ended microstrip transmission line loaded 

with a complementary split-ring resonator (CSRR) (Ebrahimi et al., 2020) was directly 

connected to the ports of the device to perform signal transmission and reception, with the data 

collection model layout, shown in Fig. 1. 

 

Figure 1. Data acquisition system 

The banana was chosen in this study because it is a common fruit in Vietnam and has a 

ripening process that occurs quickly enough to suit the experiment’s purpose. Furthermore, 

bananas contain a high amount of water, making them suitable for microwave evaluation and 

exhibiting clear color changes during different ripening stages. 

The study was conducted through two complementary experiments, serving both 

objectives: (1) distinguishing among different ripening stages of banana (unripe, semi-ripe, 

and ripe stages), and (2) predicting the onset of ripening based on microwave signal features. 

3.2. Experiment Setup 

3.2.1. Daily Monitoring 

 

Figure 2. Visual changes in banana ripening from day 1 to day 4 



 

Dong Thap University Journal of Science, Vol. 14, No. 04S (2025): 174-188 

179 

 

In Experiment 1, a banana sample was continuously monitored from the unripe (green) 

state until the onset of yellowing, as shown in Fig. 2. Measurements were taken every 4 hours 

over 4 days. Each measurement was repeated 10 times, and the average value was taken to 

reduce random measurement errors. Based on the relationship between signal features (S11, 

S21) and the change in banana peel color over time, the “ripening onset” time point was 

identified. 

The data collected from this experiment served as the foundation for evaluating the 

effect of microwaves on detecting changes in bananas during the ripening process, shown in 

Fig. 3. 

 

Figure 3. Block diagram procedure of Experiment 1. 

To ensure measurement consistency and minimize signal loss or noise, a custom-

designed circular platform was employed to secure both the antenna and the banana sample 

during data acquisition. This configuration enhanced signal stability and improved 

measurement accuracy. 

3.2.2. Day Until Ripeness Classification 

In Experiment 2, the S21 parameter was measured by a VNA, as illustrated in Fig. 4. 

The measurement process was carried out continuously once per day, starting from the point 

when the banana was unripe until it was fully ripe. 

 

Figure 4. Block diagram procedure of Experiment 2 

During a period of 3 days, a total of 30 marked bananas were randomly selected for 

measurement, as demonstrated in Fig. 5. For each fruit, measurements were taken at 4 different 

positions to ensure coverage of the entire fruit’s surface. 

At each measurement position, the VNA performed 50 sweeps, each collecting S (Real) 

and S (Image), then calculating 101 magnitude and 101 phase values of the S21 parameter 

using an equation (1) (Narendra & Hareesh, 2010) and equation (2) (Rauf et al., 2019), 

corresponding to 101 frequency points being scanned. 
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Figure 5. Color changes in the banana from day 1 to day 3 

𝑆 (𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒) = 20𝑙𝑜𝑔 (√𝑆(𝑅𝑒𝑎𝑙) + 𝑆(𝐼𝑚𝑎𝑔𝑒)) (1) 

𝑆(𝑃ℎ𝑎𝑠𝑒) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑆(𝐼𝑚𝑎𝑔𝑒)

𝑆(𝑅𝑒𝑎𝑙)
) 

(2) 

A machine learning model was developed to classify bananas into three ripeness stages: 

2 days until ripe, 1 day until ripe, and ripe. Each sample was characterized by two features, 

particularly magnitude and phase, resulting in a total of 202 features. Support Vector Machine 

(SVM) was chosen due to its effectiveness in high-dimensional spaces. 

The training dataset comprised 16,200 samples, equally distributed among three 

ripeness classes, with each class containing 5,400 samples. To further ensure a rigorous and 

reliable evaluation of the model's performance, five-fold cross-validation was applied 

exclusively to the training set. Specifically, the training dataset was randomly divided into five 

equally sized subsets; in each iteration, one subset (20%, or 3,240 samples) served as the 

validation set, while the remaining four subsets (80%, or 12,960 samples) were used for model 

training. This process was repeated five times, ensuring each training sample was utilized 

exactly once for validation. 

Features are normalized using the z-score normalization, transforming the data to have 

a mean of 0 and a standard deviation of 1 as in equation (3): 

𝑥′𝑖 =
𝑥𝑖 − 𝜇

𝜎
, (3) 

where 𝜇 is the mean, 𝜎 is the standard deviation of the feature across all samples. This ensured 

that features with different scales contributed equally to the model. The model performance 

was evaluated through the following metrics (Naidu et al., 2023). 

Accuracy quantifies the overall correctness of the model by calculating the proportion 

of correctly classified samples out of the total number of samples, as in equation (4): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
. (4) 
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Weighted Precision measures the proportion of correctly predicted positive instances 

for each class, weighted by the class’s support (number of samples in that class) to account for 

class imbalance as in equation (5): 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ (
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
×

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 ) .

𝐾

𝑖=1

 (5) 

Weighted Recall measures the proportion of actual positive instances correctly 

identified for each class, weighted by the class’s support. It is computed as in equation (6): 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 =  ∑(
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
×

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
)

𝐾

𝑖=1

. (6) 

4. Results and discussion 

4.1. Results of daily measurements 

Figure 6 illustrates the measured reflection characteristics of banana samples, focusing 

on the S11 parameter, which is a key indicator in microwave analysis. Specifically, Fig. 6(a) 

shows the S11 magnitude in decibels (dB) across a frequency range of 1 GHz to 5 GHz, with 

a zoomed-in inset highlighting the frequency band around 2.15 GHz to 2.2 GHz, where notable 

variations are observed. At this frequency range, the temporal change of the S11 amplitude 

shows a “turning point” where the initial increasing trend is reversed into a decreasing one. 

This phenomenon could be an important characteristic, suggesting potential use as an indicator 

for transitional stages in the ripening process and deserves further investigation. 

 

Figure 6. Measured reflection characteristics of the banana samples: (a) S11 magnitude 

with frequency, and (b) minimum S11 magnitude over time 

Figure 6(b) tracks the minimum S11 magnitude in dB over a measurement period of 

128 hours. It is evident that the minimum S11 value reaches its peak at approximately 32 hours 

(day 2), which corresponds to the onset of the banana’s ripening process. This significant peak 

suggests that the microwave reflection properties, as captured by the S11 parameter, are highly 

sensitive to the biochemical changes occurring during ripening. This shows that peak values, 
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especially the maximum peak of S11 can be used as indicators to identify the ripening stage, 

helping to mark important time points in the typical ripening process of bananas. 

This demonstrates the potential of microwave technology to predict the ripeness of 

bananas by monitoring the S11 magnitude, offering a non-invasive and effective method for 

assessing fruit maturity over time. 

Figure 7 shows the S21 values by frequency of banana samples measured continuously, 

with each line representing a corresponding measurement batch. The color of the line graph 

represents the measurement time: dark blue corresponds to the initial measurements and 

gradually shifts to light blue for the later measurements, corresponding to the increasing 

ripeness level. The zoomed-in section of the chart highlights the trend of the curves gradually 

moving from the bottom to the top (increasing amplitude) over time. This indicates the change 

in the dielectric properties of the sample during the ripening process. At the same time, it 

confirms that the S21 parameter in this experiment is highly sensitive to the natural ripening 

process of bananas and can be used to identify and assess ripeness. 

 

Figure 7. Measured S21 magnitude of the banana sample over frequency across 

ripening stages 

The ripening process of bananas leads to a series of biochemical changes such as starch 

breakdown, water restructuring, and the formation of polar compounds. These changes affect 

the dielectric constant and are clearly reflected in the S11 and S21 parameters in the microwave 

spectrum. Particularly, the S11 signal has a peak at the transition point, indicating a change 

from an increasing to a decreasing trend, whereas S21 has an amplitude that tends to increase 

over time. These characteristics are considered potential dielectric markers for the stages of 

the ripening process. These changes serve as the basis for strengthening the relationship 

between the obtained microwave signal and the biochemical processes within the banana 

sample. 

4.2. Results of the predictive model 

Table 1 presents the performance metrics of various SVM models. The Linear SVM 

consistently exhibited the highest overall performance across all evaluated metrics, achieving 

an accuracy of 0.99844672, a precision of 0.99844912, a recall of 0.99844672, and an F1-

score of 0.99844678. 
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Table 1. SVM model training metrics

Model Accuracy Precision Recall F1-Score 

Linear SVM 0.99844672 0.99844912 0.99844672 0.99844678 

Quadratic SVM 0.76812675 0.77599151 0.76812675 0.76148342 

Cubic SVM 0.81317179 0.81611474 0.81317179 0.81028060 

Fine Gaussian SVM 0.99167443 0.99167857 0.99167443 0.99167620 

Medium Gaussian SVM 0.85641504 0.85642113 0.85641504 0.85450265 

Coarse Gaussian SVM 0.64050947 0.65339561 0.64050947 0.64378005 

In contrast, the Quadratic SVM demonstrated notably lower performance, with an 

accuracy of 0.76812675, precision of 0.77599151, recall of 0.76812675, and an F1-score of 

0.76148342. The Cubic SVM model exhibited a modest improvement over the Quadratic 

SVM, achieving an accuracy of 0.81317179, precision of 0.81611474, recall of 0.81317179, 

and an F1-score of 0.81028060. The Fine Gaussian SVM model displayed competitive 

performance, with consistent metrics of 0.99167443 for accuracy, recall, and F1-score, and a 

precision of 0.99167857. Despite its robust performance, it remained slightly inferior to the 

Linear SVM. Meanwhile, the Medium Gaussian SVM and Coarse Gaussian SVM models 

demonstrated the lowest performances among the radial basis function (RBF) kernels, with 

accuracies of 0.85641504 and 0.64050947, respectively. 

Table 2. The cross-validation metrics table. 

Fold Accuracy Precision Recall F1-Score 

1 0.99813607 0.99813723 0.99813607 0.99813607 

2 0.99813607 0.99813732 0.99813607 0.99813611 

3 0.99875738 0.99875854 0.99875738 0.99875738 

4 0.99751476 0.99752112 0.99751476 0.99751494 

5 0.99627213 0.99627709 0.99627213 0.99627213 

Table 2 presents the cross-validation metrics obtained from the five-fold cross-

validation procedure performed on the training dataset. The model consistently demonstrated 

exceptionally high performance across all five folds. Specifically, the accuracy ranged from a 

minimum of 0.99627213 (Fold 5) to a maximum of 0.99875738 (Fold 3). Similarly, precision 

values consistently fell within the range of 0.99627709 (Fold 5) to 0.99875854 (Fold 3), and 

recall values ranged from 0.99627213 (Fold 5) to 0.99875738 (Fold 3). The F1-score also 

remained remarkably high across all validation folds, spanning from 0.99627213 (Fold 5) to 

0.99875738 (Fold 3). These consistently high metrics across all folds collectively indicate that 

the model possesses robust predictive performance and excellent generalization capability, 

thereby further confirming the reliability and stability of the chosen classification approach. 
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Table 3 presents the detailed classification performance of the model, evaluated on the 

independent test dataset, which comprises a total of 1600 samples. For the “2 days until ripe” 

class, the model achieved a high precision of 0.98484848 but a comparatively lower recall of 

0.86666667, resulting in an F1-score of 0.92198582. This suggests that while instances 

predicted as “2 days until ripe” were highly accurate (few false positives), a notable portion of 

actual “2 days until ripe” samples were not correctly identified (more false negatives). The “1 

day until ripe” class demonstrated perfect recall of 1.00000000, indicating that all samples 

belonging to this category were correctly identified by the model. However, this was coupled 

with a lower precision of 0.83857442, suggesting that some samples from other classes were 

incorrectly classified as “1 day until ripe.” The resulting F1-score for this class was 

0.91220068. The “Ripe” class exhibited excellent performance across all metrics, with a 

precision of 0.99495798, recall of 0.98666667, and an F1-score of 0.99079498. These values 

reflect near-perfect identification accuracy and minimal misclassifications for this category. 

Overall, the weighted average performance across all classes remained consistently 

high, with a precision of 0.95207103, recall of 0.94500000, and an F1-score of 0.94534297. 

This comprehensive evaluation underscores the model's robust predictive reliability and its 

strong capability to differentiate between the different stages of ripeness on unseen data. 

Table 3. Class prediction performance 

Class Precision Recall F1-Score 

2 days until ripe 0.98484848 0.8 6666667 0.92198582 

1 day until ripe 0.83857442 1.000000000 0.91220068 

Ripe 0.99495798 0.98666667 0.99079498 

Weighted 0.95207103 0.94500000 0.94534297 

 

Figure 8. Confusion matrix for Linear SVM on testing data 
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The confusion matrix presented in Fig. 8 illustrates the performance of the Linear SVM 

model on the independent test dataset across three ripeness categories. The “1 day until ripe” 

class had 520 correctly identified samples, while 77 samples were misclassified as “2 days 

until ripe” and 3 as “ripe”. This misclassification is likely due to the similarity in unripe signal 

characteristics between the “2 days until ripe” and “1 day until ripe” stages, which can lead to 

confusion during classification. The “2 days until ripe” class achieved perfect identification, 

with all 400 samples correctly classified. For the “ripe” class, the model correctly classified 

592 samples, with only 8 incorrectly identified as “1 day until ripe”.  

This confusion matrix highlights the model’s overall strong performance, particularly 

its capability to accurately distinguish the “2 days until ripe” and “ripe” classes, while showing 

minor challenges in classifying the intermediate “1 day until ripe” category. 

5. Conclusion 

This study has demonstrated the feasibility of using S-parameters collected from a VNA 

to monitor and predict the ripeness of bananas. By measuring daily at various positions on the 

fruit’s surface, and then converting the amplitude and phase data into input feature vectors, 

machine learning models have been trained to effectively classify the ripening stages. 

Among the evaluated models, the Linear SVM achieved the highest overall accuracy of 

99.84% and exhibited strong capability in differentiating between ripeness stages. Notably, it 

performed particularly well in distinguishing the “1 day until ripe” and “ripe” categories. The 

validation results further confirm the model’s effectiveness, showing that it accurately 

identified nearly all samples with a high degree of reliability and consistency across the 

classes. 

This result demonstrates the potential application of microwaves in identifying fruit 

ripeness, while indicating the limitations when the signal characteristics overlap between 

stages. Improvements in data preprocessing and model design could be the next research 

directions to increase classification accuracy. 

This study opens a new direction in the application of microwave spectroscopy in food 

evaluation, particularly in real-time prediction of fruit ripeness and quality. Instead of merely 

distinguishing between fresh–spoiled or ripe–unripe states, the use of S-parameters combined 

with machine learning enables more continuous and accurate monitoring of biochemical 

changes. 

The application of microwave technology in the food industry can be integrated into 

automated sorting lines, enabling rapid, non-destructive assessment of fruit ripeness. This 

allows businesses to optimize storage and transportation, minimize post-harvest losses, and 

ensure product quality reaches consumers effectively. 
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