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Abstract 
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1. Introduction 

Duality is one of the most important 

topics in optimization both from a theoretical 

and algorithmic point of view. In scalar 

optimization, the weak duality implies that the 

difference between the primal and dual optimal 

values is non-negative. This difference is 

called duality gap (Bigi & Papaplardo, 2005; 

Jeyakumar & Volkowicz, 1990). One says that 

a program has zero duality gap if the optimal 

value of the primal program and that of its dual 

are equal, i.e., the strong duality holds. There 

are many conditions guaranteeing zero duality 

gap (Jeyakumar & Volkowicz, 1990; Vinh et 

al., 2016). We are interested in defining zero 

duality gap in vector optimization. However, 

such a definition cannot be applied to vector 

optimization easily, since a vector program has 

not just an optimal value but a set of optimal 

ones (Bigi & Papaplardo, 2005). Bigi & 

Pappalardo (2005) proposed some concepts of 

duality gap for a vector program with 

involving functions posed finite dimensional 

spaces, where concepts of duality gaps had 

been introduced but relying only on the 

relationships between the set of proper minima 

of the primal program and proper maxima of 

its dual. To the best of our knowledge, zero 

duality gap has not been generally studied in a 

large number of papers dealing with duality for 

vector optimization yet. Recently, zero duality 

gap for vector optimization problem was 

studied in Nguyen et al. (2020), where Farkas-

type results for vector optimization under the 

weakest qualification condition involving the 

characterizing set for the primal vector 

optimization problem are applied to vector 

optimization problem to get results on zero 

duality gap between the primal and the 

Lagrange dual problems. 

In this paper we are concerned with the 

vector optimization problem of the form 

            {                }  

where       are real locally convex Hausdorff 

topological vector spaces,   is nonempty 

convex cone in  ,                are 

proper mappings, and       (Here 

      is the set of all weak infimum of the 

set      by the weak ordering defined by a 

closed cone   in  ). 

The aim of the paper is to establish results 

on zero duality gap between the problem      

and its Lagrange dual problem under the 

qualification conditions involving the 

characterizing set corresponding to the 

problem     . The principle of the weak zero 

duality gap (Theorem 1), to the best of the 

authors’ knowledge, is new while the strong 

zero duality gap (Theorem 2) is nothing else 

but (Nguyen et al., 2020, Theorem 6.1). The 

difference between ours and that of Nguyen et 

al. (2020) is the method of proof. Concretely, 

we do not use Farkas-type results to establish 

results on strong zero duality gap in our 

present paper.  

The paper is organized as follows: In 

section 2 we recall some notations and 

introduce some preliminary results to be used 

in the rest of the paper. Section 3 provides 

some results on the value of      and that of 

its dual problem. Section 4 is devoted to results 

on zero duality gap for the problem      and 

its dual one. Finally, to illustrate the 

applicability of our main results, the linear 

programming problem will be considered in 

Section 5 and some interesting results related 

to this problem will be obtained. 

2. Preliminaries 

Let       be locally convex Hausdorff 

topological vector spaces (briefly, lcHtvs) with 

topological dual spaces denoted by         , 

respectively. The only topology considered on 

dual spaces is the weak*-topology. For a set 

   , we denote by   and  
 

 the closure and 

the  interior of  , respectively. 

Let     be a closed and convex cone in 

  with nonempty interior, i.e.,  
 

  . The  
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weak ordering generated by the cone   is 

defined by, for all        ,  

                   
 

  

or equivalently,        if and only if 

        
 

. 

We enlarge   by attaching a greatest 

element     and a smallest element     

with respect to   , which do not belong to  , 

and we denote       {       }. By 

convention,        and          for 

any    . We also assume by convention that 

                       

                    
     {   }  

                      
   {   }  

The sums             and  

            are not considered in this paper.  

By convention,         ,          

and          for all     
 

. 

Given       , the following notions 

specified from Definition 7.4.1 of Bot et al. 

(2010) will be used throughout this paper.   

• An element  ̅     is said to be a weakly 

infimal element of   if for all     we have 

    ̅ and if for any  ̃     such that 

 ̅    ̃, then there exists some     

satisfying     ̃. The set of all weakly 

infimal elements of   is denoted by       

and is called the weak infimum of  . 

• An element  ̅     is said to be a weakly 

supremal element of   if for all     we 

have  ̅     and if for any  ̃     such that 

 ̃    ̅, then there exists some     

satisfying  ̃    . The set of all weakly 

supremal elements of   is denoted by       

and is called the weak supremum of  . 

• The weak minimum of   is the set 

              and its elements are 

the weakly minimal elements of  . The weak 

maximum of  ,      , is defined similarly, 

              .  

Weak infimum and weak supremum of the 

empty set is defined by convention as 

      {   } and       {   }, 
respectively. 

Remark 1.  For all      and    , 

the first three following properties can be easy 

to check while the last one comes from 

(Tanino, 1992): 

•                  ,  

•       {   }       ̃       

         ̃  

•                , 

• If     and        , then 

       
 

    
 

. 

Remark 2. For all       it holds 

  (       
 

)   . Indeed, assume that  

          
 

   , then there is 

        satisfying      
 

 which 

contradicts the first condition in definition of 

weak infimum. 

Proposition 1. Assume that       

and        . Then the following 

partitions of   holds (The sets        form a 

partition of   if          and they are 

pairwise disjoint sets):  

  (   
 

)        (       
 

) 

         
 

             

                       
 

   

Proof. The first partition is established by 

Dinh et al. (2017, Proposition 2.1). The others 

follow from the first one and the definition of 

     .                                                           
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Proposition 2. Assume that 

        and       {   }. 
Then, one has              .  

Proof. As     and     we have 

      {   } and       {   }. 
According to Proposition 1, one has 

            
 

   . Since    , it 

follows that             
 

      On 

the other hand, one has        
 

    
 

 

(see Remark 1), we gain                  

                
 

     which is 

equivalent to                 
 

      

The conclusion follows from the partition 

            (       
 

) 

(see Proposition 1).                                                  

Given a vector-valued mapping       

      , the effective domain and the          

 -epigraph of   is defined by, respectively,  

      {            } 

      {                  }  

We say that    is proper if        and 

        , and that   is   -convex if      

is a convex subset of     .  

Let     be a convex cone in   and    

be the usual ordering on   induced by the cone 

 , i.e.,                                  
We also enlarge   by attaching a greatest 

element     and a smallest element     

which do not belong to  , and define       
{       }. The set, 

         {                 }  
is called the cone of positive operators from   

to      

For          and       {   }, 
the composite mapping          is 

defined by:  

         {
                  
                

 

Lemma 1 (Canovas et al., 2020, Lemma 

2.1(i)). For all        and     
 

, there is 

    such that           .  

Lemma 2. Let      ,     ,  

    
 

,        {              }. 
The following assertions hold true: 

          , 

                  if and only if 

       

Proof. Let us denote  

   {              }. 

    Take  ̅   . Let    and  ̅ play the 

roles of    and   in Lemma 1 respectively, one 

gets the existence of     such that 

    ̅       . 

Then,         ̅       , and 

hence,     which yields      .  

     Consider two following cases: 

Case 1.      : Then,     and 

     . Furthermore, as      , one has 

   
 

      
 

    
 

  , consequently,  

  ̃             ̃                 (1) 

which yields       {   } (see Remark 

1). So,              if and only if 

       . 

 Case 2.      : According to    , 

one has      . We will prove that        

     . For this, it suffices to show that   

is bounded from below. Firstly, it is worth 

noting that for an arbitrary  ̃   , there exists 

 ̃    satisfying  ̃      ̃     (apply 

Lemma 1 to     ̃ and     ). So, if we 

assume that   is not bounded from below, 

then there is  ̃    (which also means 

    ̃       ) satisfying  ̃   ̃. This 

yields  ̃      ̃          ̃       ̃  
 ̃                     and 

we get       (as  ̃ is arbitrary), which 

contradicts the assumption      . 
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Note now that      , (1) does not 

hold true,       {   } (see Remark 1). 

As     we have       {   }. 

We prove that              . 

First, we begin by proving             
 

 

To obtain a contradiction, suppose that 

           
 

. Then, there is a 

neighborhood   of    such that 

             . 

Take     such that       , one gets 

               . This yields 

      , which contradicts the fact that 

        . So,            
 

, or 

equivalently,            for all    .  

Second, let  ̃    such that           ̃. 

Then,          ̃   
 

, and hence, there is 

a neighborhood   of    such that                

           ̃   . Take     such that 

     , one has              ̃     
which yields           Since         , 

there is      such that        . As 

     one has            , or 

equivalently, there exists      such that 

            . On the other hand,  

                               

                    

          ̃     
 

   

                 ̃   
 

  

or equivalently,              ̃.   

From what has already been proved we 

have                .   

It remains to prove that      if        

            .  It is easy to see that if 

     then                   

             
 

 and if      then 

                        

       
 

. So, it follows from the 

decomposition  

          
 
                

 
  

that              whenever     .   

We denote by        the space of linear 

continuous mappings from   to  , and by    

the zero element of        (i.e.,          

for all    ). The topology considered in 

       is the one defined by the point-wise 

convergence, i.e., for                 and 

        ,      means that            

in   for all    . 

Let denote  

    {                   }  

  
   {                   

 

}  

The following basic properties are useful 

in the sequel. 

Lemma 3 (Nguyen et al., 2020, Lemma 

2.3).  It holds: 

       
     

         {   }    
 .  

3. Vector optimization problem and its 

dual problem 

Consider the vector optimization problem 

of the model  

            {                 }  

where, as in previous sections,       are 

lcHtvs,   is a closed and convex cone in   

with nonempty interior,   is a closed, convex 

cone in  ,                are proper 

mappings, and      . Let us denote 

             and assume along this 

paper that         , which also means 

that      is feasible. 

The infimum value of the problem      is 

denoted by  

              {                }  (2) 

A vector  ̅    such that    ̅          

is called a solution of     . The set of all 
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solutions of      is denoted by        . It is 

clear that                        

The characterizing set corresponding to 

the problem      is defined by Nguyen et al. 

(2020) 

   ⋃  

             

                   

Let us denote   the conical projection 

from     to  , i.e.,          for all 

         , and consider the following sets  

         {  }       (3) 

     (   {  }    )  (4) 

Proposition 3 (Nguyen et al., 2019, 

Propositions 3.3, 3.4).  It holds: 

                  , and 

consequently,         , 

            , 

        

 

     
 

 and   

 

     
 

, in 

particular,   

 

 and    

 

 are both nonempty, 

        {  }     {  }     and  

   {  }     {  }    .  

Proposition 4.                   

Proof. It follows from Proposition 3   , 

(2), and Remark 1                                                   

Nguyen & Dang (2018) introduced the  

Lagrangian dual problem       of      as 

follows 

           
         

      {                 }  

The supremum value of       is defined as  

              ( ⋃  

         

    {    

             })  

For any          , set 

          {                 }. 

We say that an operator           is a 

solution of       if                 

and the set of all solutions of       will be 

denoted by         . 

Remark 3. Let    {              

                
 

} and define 

         for all        . According to 

Nguyen et al. (2018, Remark 4), one has  

                   

Moreover, it follows from Nguyen & 

Dang (2018, Theorem 5) that weak duality 

holds for pair           . Concretely, if 

     is feasible and          {   } then 

                     

Proposition 5. Assume that   is  -

convex, that   is  -convex, and that   is a 

convex subset of  . Then, one has          

           {            }, where 

   is given in (4). 

Proof.     Take  ̅          , we will 

prove that  ̅        . 

      Firstly, prove that  ̅    . Assume 

the contrary, i.e., that  ̅    , or equivalently, 

     ̅   . Then, apply the convex 

separation theorem, there are   
     and 

  
     such that  

   
   ̅     

        
               (5) 

  Prove that   
    

  and   
    . Pick 

now  ̅        . Take arbitrarily    . It 

is easy to see that        ̅        for any 

   . So, by (5),  

   
   ̅     

     ̅                

and hence,  

  
 

 
   

   ̅     ̅      
               

Letting     , one gains    
      . 

As   is arbitrarily, we have   
    . To prove 

  
    

 , in the light of Lemma 3, it is 

sufficient to show that   
     . On the 
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contrary, suppose that    
     . According to 

(5), one has  

   
                     

This, together with the fact that        ̅    , 

yields    
       , a contradiction. 

We now show that   
    . Indeed, take 

arbitrarily    . For any    , one has 

    ̅        ̅    , and hence, by (5)  

   
   ̅     

     ̅      
     ̅          

       

which implies   

 
 

 
    

   ̅     ̅      
     ̅       

     

      

Letting     , one gains    
      . 

Consequently,   
    . 

  We proceed to show that  ̅        
 

  

Indeed, pick     
 

. Since   
    

 , it follows 

that    
       . Let  ̅     defined by 

 ̅    
   

    

   
     

  . Then, it is easy to check that 

          and   
   ̅    

 . 

Take              . As 

              from (5), we have 

   
   ̅     

           
         

and hence, with the help of  ̅,  

   
   ̅     

           
    ̅           

or equivalently,  

   
   ̅         ̅            

So, there is     such that 

    
   ̅         ̅               

or equivalently,  

⟨  
   ̅         ̅        

 

   
     

  ⟩     

As   
    

 , the last inequality entails  

 ̅         ̅        
 

   
     

    
 

  

or equivalently,  

 ̅  
 

   
     

          ̅         
 

  

Hence,  ̅  
 

   
     

        and we get 

 ̅        
 

. This contradicts the fact that 

 ̅                   . Consequently, 

 ̅    . 

      Secondly, we next claim that 

 ̅      
 

. For this purpose, we take 

arbitrarily  ̃   
 

 and show that  ̅   ̃    , or 

equivalently,      ̅   ̃   . 

As  ̅                    and 

 ̅  
 

 
 ̃    ̅, there is  ̃       such that 

 ̅  
 

 
 ̃    ̃, or equivalently,  

 ̅  
 

 
 ̃   ̃   

 

                      (6) 

As  ̃      , there exists  ̃          

such that  

 ̃       ( ̃   )     
 

     

                

Moreover, by the convex assumption, 

    ̃                   
 

 is a 

convex set of   (Nguyen Dinh et al., 2019, 

Remark 4.1). Hence, the convex separation 

theorem (Rudin, 1991, Theorem 3.4) ensures 

the existence of   
     satisfying  

   
   ̃     

      

        ̃                   
 

  

So, according to Nguyen Dinh et al. 

(2019, Lemma 3.3), one gets   
    

  and  

   
   ̃     

  (   ̃   )        

                         (7) 
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Take now        . Then, there is 

 ̃              such that  

     ̃             ̃            (8) 

It is worth noting that  ̃         , one 

gets from (8) that  

 ̃    ( ̃   )  ̃             ̃     (9) 

Since   
    

 , it follows from (6), (7), 

and (9) that    
   ̅  

 

 
 ̃     

   ̃    

   
   ̃     

     ̃    ̃      ̃  , 
   

        
     ̃  , and    

   ̃        
    ̃      ̃  . 

From these inequalities,  

   
   ̅   ̃     

   ̅  
 

 
 ̃     

        
   ̃      (10) 

(recall that    
   ̃    as   

    
  and  ̃   

 
). 

Note that (10) holds for any        . This 

means that      ̅   ̃  is strictly separated 

from  , and consequently,      ̅   ̃    

(see Zalinescu, 2002, Theorem 1.1.7).  

      Lastly, we have just shown that 

 ̅          
 
 . So,  ̅               .  

    Take  ̅        , we will prove that 

 ̅          . 

     Firstly, take  ̃    such that  ̃    ̅. 

Then, as  ̅         one has  ̃    . We 

now apply the argument in Step      again, 

with  ̅ replaced by  ̃ to obtain   ̃        
 

, 

or in the other words, there is         such 

that  ̃     . 

      Secondly, prove that  ̅     for all 

      . Suppose, contrary to our claim, that   

there is  ̂       such that  ̅    ̂. Then, 

there is  ̂   
 

 such that  ̅   ̂   ̂. Hence,  

 ̂       and  ̅  
 

 
 ̂    ̅   ̂   ̂. Letting 

 ̅  
 

 
 ̂ and  ̂ play the roles of  ̅   ̃ and  ̃ 

(respectively) in Step      and using the same 

argument as in this step, one gets      ̅  
 

 
 ̂    

which also means  ̅  
 

 
 ̂    . On the other 

hand, since  ̅    ̅  
 

 
 ̂  there is       

such that      ̅  
 

 
 ̂, and consequently,  

 ̅  
 

 
 ̂      

 

        . 

We get a contradiction, and hence, 

 ̅     for all       . 

      Lastly, it follows from Steps     , 

     and the definition of weak supremum  

that  ̅                   . The proof   

is complete.                                                          

Remark 4. According to the proof of 

Proposition 5, we see that if all the 

assumptions of this proposition hold then one 

also has                   

4. Zero duality gap for vector 

optimization problem 

Consider the pair of primal-dual problems 

     and       as in the previous section. 

Definition 1. We say that      has weak 

zero duality gap if                    

and that      has a strong zero duality gap if 

                .  

Theorem 1.  Assume that   is  -convex, 

that   is  -convex, and that   is a convex 

subset of   . Then, the following statements  

are equivalent: 

       {  }            

    {  }             

for some      and     
 

, 

          has a weak zero duality gap.  

Proof. [(i) (ii)] Assume that there are 

     and     
 

 satisfying  

    {  }            

    {  }                          (11) 

Let  

               {             } 
           {               }  
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(see Proposition 3). Then, according to Lemma 

2, one has                which, 

together with Proposition 4, yields                

               . 

We now prove that                 . 

With the help of Lemma 2 and Proposition 5, 

we begin by proving 

      {               } 
          {             }  
(see Proposition 3).  

Set   
      {             }    

As      , one has  

                                             (12) 

Three following cases are possible: 

Case 1.      . Then, (12) yields 

         . 

Case 2.      . Then, one has        

             , or equivalently, 

   {  }             . This accounts 

for    {  }             , and then, 

by (11), one gets    {  }              

which yields              . So, 

         . 

Case 3.     . We claim that         
Conversely, by (12), suppose that        . 

Then, there is       such that           , 

or equivalently,  

                {  }           .  
This, together with (11), leads to  

                {  }            
and hence, 

(  *         
 

+)      {  }      

    }      

(as   *         
 

+ is a neighborhood of 

            ). Consequently, there is 

      such that                which 

yields           . This contradicts the 

fact that       {             }.  

So,       . 

In brief, we have just proved that        

                         which also 

means that                   . 

[(ii) (i)] Assume that there is             

                   . Pick arbitrarily 

    
 

. We now prove that  

   {  }            

     {  }           .      (13) 

It is easy to see that 

    {  }               {  }             

and that    {  }            is a closed 

set. So, the inclusion “ ” in (13) holds trivially. 

For the converse inclusion, take arbitrarily 

        ̃       {  }            we 

will prove that  

        ̃       {  }           . 

As         ̃      we have     ̃     , 

which implies that  ̃     {             }  

On the other hand, it holds                    

(see Proposition 5), and hence, 

    {             }    (see Lemma 2). 

So, one gets  ̃     which yields  

       ( ̃  
 

 
)                   (14) 

Note that, one also has                 . 

So, for each     , it follows from (14) and 

the definition of infimum that the existence of 

      such that        ( ̃  
 

 
)   , and 

consequently,    ( ̃  
 

 
)        

 

         

(see Proposition 3) which yields  

       ( ̃  
 

 
)       {  }           . 

As        ( ̃  
 

 
)             ̃     

we obtain 

         ̃       {  }           . 
The proof is complete.                                     

We now recall the qualification condition 

(Nguyen et al., 2020) 

           {  }        {  }      
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We now study the results on a strong zero 

duality gap between the problem (VP) and its 

Lagrange dual problems, which are established 

under the condition      without using 

Farkas-type results while the such ones were 

established in Nguyen et al., 2020, where the 

authors have used Farkas-type results for 

vector optimization under the condition 

     to obtain the ones (see Nguyen et al., 

2020, Theorem 6.1). We will show that it is 

possible to obtain the ones by using the convex 

separation theorem (through the use of 

Proposition 5 given in the previous section). 

The important point to note here is the use of 

the convex separation theorem to establish the 

Farkas-type results for vector optimization in 

Nguyen et al., 2020 while the convex 

separation theorem to calculate the supremum 

value of       in this paper.  

Theorem 2. Assume that          {   }. 

Assume further that   is  -convex, that   is  -

convex, and that   is convex. Then, the 

following statements are equivalent: 

         holds, 

          has a strong zero duality gap.  

Proof. [          ] Assume that     holds. 

Since   is continuous, we have  

 (   {  }    )       {  }          

As     holds, it follows from Proposition 

3     that      . Recall that       are 

nonempty subset of   (by the definition of 

      and Proposition 3      . So,   

       {   } and     , and then, 

Proposition 2 shows that                    

Noting that                 (Nguyen 

Dinh et al., 2017, Proposition 2.1(iv)). Hence, 

                 Combining this  

with the fact that               and 

               , we get                     

As    
 

  
 

 we have  

          
 

          
 

          (15) 

On the other hand, by the weak duality 

(see Remark 3), one has          
 

           
 

  

which, together with (15), gives         

 
 

           
 

  and      is achieved, taking 

(Lohne, 2011, Corollary 1.48) into account. 

 [          ] Assume that      holds, we 

will prove that     holds. It is clear that  

   {  }        {  }         (16) 

So, we only need to show that the 

converse inclusion of      holds. Take 

     ̅   . Then, one has  ̅    . 

Assume that         {   }. Then, in the 

light of Proposition 4, one has        {  } 

which also means that        (see 

Remark 1). Observing that        , 

consequently,     . This entails  ̅    , or 

equivalently,      ̅    showing that 

     ̅     {  }    . 

Assume that         {   }. Then, as 

     holds, from Propositions 4 and 5,  
                               {   }. 
By the decomposition 

           
 

              
(see Proposition 1) and the fact that 

            
 

    (see Remark 2), one 

gets            . So, there are 

          and  ̅    such that  ̅      ̅.  

Pick     
 

. For each     , one has  

        ̅  
 

 
    ̅  

 

 
    

 This, together with the fact that          

                 yields the existence 

of sequence {  }        such that 

     ̅  
 

 
   for all     .  

Then,  ̅  
 

 
       

 

         

(see Proposition 3) which is equivalent to 

     ̅  
 

 
       {  }    . Here, note 

that      ̅  
 

 
         ̅ , we obtain 

     ̅     {  }    , which is desired.   
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Remark 5. It is worth mentioning that 

when we take    , K       ,           , 

              the problem      collapses 

to the problem       in Pham et al. (2019). 

Then, the result on strong duality for the 

problem       in Pham et al. (2019, Theorem 

4.3) follows from Theorem 2.      

Let us now introduce the second 

qualification condition, saying that    is closed 

regarding the set {  }     concretely, 

               {  }        {  }      

Theorem 3. Assume that the problem 

     is feasible and          {   }. 
Assume further that   is  -convex, that   is  -

convex, and that   is a convex set of  . If the 

condition         holds then the problem      

has a strong zero duality gap.  

Proof. According to Proposition 4 and 

Proposition 5, we have                

and                . As         holds, 

one finds that      . Consequently, one has 

                .                                     

The following example shows that the 

converse implication in Theorem 3 does not hold.  

Example 1  Let                 
    

         and        . Let        

and       be such that              

and           for all    . It is easy to 

see that   is  -convex, that   is  -convex, and 

  is convex. In this case, we have  

  ⋃  

             

                  

  ⋃  

       

                     
    

By some calculations, we obtain  

   {  }     { }   {            
     }                    

   {  }     { }   {            
     }                    

On the other hand, 

        

     {                } 

     {               } 

  { }         {               }  
        { }    

         {               }, and  

         

        

  { }         {               }  
        { }    

It is clear that the converse implication in 

Theorem 3 does not hold.  

5. A special case: Linear programming 

In the this section, as an illustrate example 

for the results established above, we consider a 

special case of the problem (VP), that is the 

linear programming: 

                                  

where     ,         , and    . 

Observing that the problem      collapses to 

the problem      when we take    , 

K       ,           ,            . 

Then, the corresponding  characterizing set of 

     is  

   {                }            

The qualification condition      now is 

           {  }         {  }      

Recall that the Lagrange dual problem of 

      denoted by         is  

                                      

It is worth mentioning that the problem 

     is a special case of the linear 

programming problem (IP) in Anderson (1983) 

and the problem (ILP) in Pham et al. (2019) 

where    . The duality for the problem 

      was considered in Anderson (1983) 

under the closedness conditions. Recently, 

Pham et al. (2019) had studied the duality for 
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the problem       under some necessary and 

sufficient conditions.  

We now introduce a new type of dual 

problem of      called the  sequential dual 

problem as follows:  

         [       
   

      ]                     

                  

The relations between the values of the 

problem      and its dual problems are given 

by the following proposition. 

Proposition 6. It holds:  

                         .  

Proof. 

  Prove that                  : It is 

easy to see that  

            {       
   

                  } 

            {       
   

                  } 

where  

    {                    
           } 

    {                   
     } 

Obviously,      . So,                  . 

  Prove that                 : Take 

            and     such that            

Then,                         for all 

    , and hence, 

                       ,  

or,                       .  

The desired inequality follows from the 

definition of the problems      and      .     

The next result extends (Pham et al., 2019, 

Theorem 4.3) in the case when taking       

Corollary 3. The following statements are 

equivalent:   

(i)        holds, 

(ii)                             

 Proof. Firstly, by Proposition 6,      is 

equivalent to                          The 

conclusion now follows from Theorem 2.       

We next introduce a sufficient condition, 

which ensures the fulfillment of the condition 

      , and then, leads to the results on zero 

duality gap for the pairs        

                         

Proposition 7. Assume that there are 

      and      such that  

                           (14) 

                               (15) 

 Then,        holds. 

 Proof. It is sufficient to prove that 

    {  }         {  }    . To do 

this, take          . We will show that 

           {  }    . Indeed, since 

         , it follows that there exists a net 

                    such that  

                              (16) 

                                 .     (17) 

Assume that there are       and      

such that (14) and (15) holds. This, together 

with (17), leads to the fact that 

                                  

for all    .  

Since       and     , it follows from 

the above inequality that              
This, together with the last one of (15) and 

(14), one gets  

            

                       

or equivalently,         . From this and the 

first one of (15), we obtain 
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           {  }    ,  

and hence,            {  }      

as desired.            

The next result is a direct consequence of 

Proposition 7 and Corollary 3. 

Corollary 4. Assume all the assumptions 

of Proposition 7 hold. Then, one has   

                           

Corollary 5. Assume that the following 

conditions hold:   

      The problem       is feasible, i.e., 

there is       such that       .  

            .  

Then,                             

 Proof. The fulfillment of      means that 

there is       such that (14). As      holds, 

there exists      such that        . This 

leads to the fact that (15) holds. The 

conclusion now follows from Corollary 4.                         

Corollary 6. Assume that      and one of 

the following condition holds:   

          .  

        is a surjection.  

Then,                             

Proof. It is easy to see that if at least one 

of the conditions      and      holds then      

holds as well. So, Corollary 6 is a consequence 

of Corollary 5. 
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