Dong Thap University Journal of Science, Vol. 9, No. 5, 2020, 03-16

A NEW APPROACH TO ZERO DUALITY GAP OF VECTOR
OPTIMIZATION PROBLEMS USING CHARACTERIZING SETS

Dang Hai Long* and Tran Hong Mo**
'Faculty of Natural Sciences, Tien Giang University, Vietnam
2Office of Academic Affairs, Tien Giang University, Vietnam
“Corresponding author: Tran Hong Mo, Email: tranhongmo@tgu.edu.vn
Article history
Received: 25/08/2020; Received in revised form: 25/09/2020; Accepted: 28/09/2020

Abstract
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1. Introduction

Duality is one of the most important
topics in optimization both from a theoretical
and algorithmic point of view. In scalar
optimization, the weak duality implies that the
difference between the primal and dual optimal
values is non-negative. This difference is
called duality gap (Bigi & Papaplardo, 2005;
Jeyakumar & Volkowicz, 1990). One says that
a program has zero duality gap if the optimal
value of the primal program and that of its dual
are equal, i.e., the strong duality holds. There
are many conditions guaranteeing zero duality
gap (Jeyakumar & Volkowicz, 1990; Vinh et
al., 2016). We are interested in defining zero
duality gap in vector optimization. However,
such a definition cannot be applied to vector
optimization easily, since a vector program has
not just an optimal value but a set of optimal
ones (Bigi & Papaplardo, 2005). Bigi &
Pappalardo (2005) proposed some concepts of
duality gap for a vector program with
involving functions posed finite dimensional
spaces, where concepts of duality gaps had
been introduced but relying only on the
relationships between the set of proper minima
of the primal program and proper maxima of
its dual. To the best of our knowledge, zero
duality gap has not been generally studied in a
large number of papers dealing with duality for
vector optimization yet. Recently, zero duality
gap for vector optimization problem was
studied in Nguyen et al. (2020), where Farkas-
type results for vector optimization under the
weakest qualification condition involving the
characterizing set for the primal vector
optimization problem are applied to vector
optimization problem to get results on zero
duality gap between the primal and the
Lagrange dual problems.

In this paper we are concerned with the
vector optimization problem of the form

(VP) WIinf{F(x):x € C,G(x) € —S},

where X, Y, Z are real locally convex Hausdorff
topological vector spaces, S is nonempty

4

convex cone in Z, F:X ->Y*, G:X - Z° are
proper mappings, and @+ Cc X (Here
WinfD is the set of all weak infimum of the
set D c Y by the weak ordering defined by a
closed cone K inY).

The aim of the paper is to establish results
on zero duality gap between the problem (VP)
and its Lagrange dual problem under the
qualification ~ conditions  involving  the
characterizing set corresponding to the
problem (VP). The principle of the weak zero
duality gap (Theorem 1), to the best of the
authors’ knowledge, is new while the strong
zero duality gap (Theorem 2) is nothing else
but (Nguyen et al., 2020, Theorem 6.1). The
difference between ours and that of Nguyen et
al. (2020) is the method of proof. Concretely,
we do not use Farkas-type results to establish
results on strong zero duality gap in our
present paper.

The paper is organized as follows: In
section 2 we recall some notations and
introduce some preliminary results to be used
in the rest of the paper. Section 3 provides
some results on the value of (VP) and that of
its dual problem. Section 4 is devoted to results
on zero duality gap for the problem (VP) and
its dual one. Finally, to illustrate the
applicability of our main results, the linear
programming problem will be considered in
Section 5 and some interesting results related
to this problem will be obtained.

2. Preliminaries

Let X,Y,Z Dbe locally convex Hausdorff
topological vector spaces (briefly, IcHtvs) with
topological dual spaces denoted by X*,Y*, Z*,
respectively. The only topology considered on
dual spaces is the weak*-topology. For a set

U c X, we denote by U and U the closure and
the interior of U, respectively.

Let K & Y be a closed and convex cone in
Y with nonempty interior, i.e., K # @. The
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weak ordering generated by the cone K is
defined by, for all y;,y, €Y,

V1<kY: © Y1—Y2€-K,
or equivalently, y; £y, if and only if

y1— Y2 € —K.

We enlarge Y by attaching a greatest
element 400, and a smallest element —oo,
with respect to <y, which do not belong to Y,
and we denote Y*:=Y U{—ooy,+o0,}. By
convention, —ooy <g y and y <k (4ooy) for
any y € Y. We also assume by convention that

—(+o0y) = —o0y,

(+ooy) +y =y + (+ooy) = +0ooy,
Vy €Y U {400y},
(—y) +y =y + (—oy) = —0y, Vy
E Y U {_Ooy}.

The sums  (—ooy) + (+o0y) and
(+o0y) + (—o0y) are not considered in this paper.

_(_OOY) = +00y,

By convention, inf @ = +oo, 00k, = 400y
and —ook, = —ooy, forall k, € K.

Given @ = M c Y*, the following notions
specified from Definition 7.4.1 of Bot et al.
(2010) will be used throughout this paper.

* An element ¥ € Y* is said to be a weakly
infimal element of M if for all v € M we have
v v and if for any ¥ €Y*® such that
v <k U, then there exists some veM
satisfying v <x ¥. The set of all weakly
infimal elements of M is denoted by WinfM
and is called the weak infimum of M.

* An element ¥ € Y* is said to be a weakly
supremal element of M if for all ve M we
have v £ v and if for any ¥ € Y* such that
U <k v, then there exists some veM
satisfying ¥ <x v. The set of all weakly
supremal elements of M is denoted by WSupM
and is called the weak supremum of M.

» The weak minimum of M is the set
WMinM = M N WinfM and its elements are

the weakly minimal elements of M. The weak
maximum of M, WMaxM, is defined similarly,
WMaxM:= M N WSupM.

Weak infimum and weak supremum of the
empty set is defined by convention as
WSup® = {—o0y} and WInfQ = {400y},
respectively.

Remark 1. Forall McY*® and a €Y,
the first three following properties can be easy
to check while the last one comes from
(Tanino, 1992):

*Winf(M +a) = a+ WInfM,

s WInfM = {—o0y} & VU EY,
v eMv<g7D,

« WInf(M + K) = WinfM,

e« If McY and WInfM cY, then
W1nfM+1°<=M+1°<.

Remark 2. For all M cY*, it holds
MnN (WInfM - K) = (. Indeed, assume that
Mn(WInfM — Io() + @, then tpere IS

v € WiInfM satisfying v e M+ K which
contradicts the first condition in definition of
weak infimum.

Proposition 1. Assume that  #M c Y
and WinfM cY. Then the following
partitions of Y holds (The sets A,B,C form a
partition of Y if Y = AU B U C and they are
pairwise disjoint sets):

v=(M+ 1°<) UWInfM U (WinfM — IO()
= (M +K) U (WInfM — K)

= (WInfM + K) U (WInfM — K).
Proof. The first partition is established by
Dinh et al. (2017, Proposition 2.1). The others

follow from the first one and the definition of
WinfM.
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Proposition 2. Assume that
@+#McNcY and WInfM # {—ooy}.
Then, one has WinfM c WinfN + K.

Proof. As M and @ # N we have
WInfM # {+o0,} and WInfN # {+ooy}.
According to Proposition 1, one has
(WInfN)Nn(N+K)=@. Since McN, it
follows that (WInfN)Nn (M +K)=@. On

the other hand, one has WIinfM + K = M + K
(see Remark 1), we gain

(WInfN)n (WInfM + K) =@, which is

equivalent to (WInfM) n (WInfN — I°<) =0
The conclusion follows from the partition
Y = (WInfM + K) U (WinfM — f()

(see Proposition 1). O

Given a  vector-valued  mapping
F:X - Y*, the effective domain and the
K-epigraph of F is defined by, respectively,

domF: = {x € X: F(x) # +ooy}
epiF:={(x,y) EXXY:y € F(x) + K}.

We say that F is proper if domF # @ and
—ooy & F(X), and that F is K-convex if epiF
Is a convex subset of X x Y.

Let S = @ be a convex cone in Z and =;
be the usual ordering on Z induced by the cone
S, ie., 2z, S5z, ifandonlyif z, —z, €.
We also enlarge Z by attaching a greatest
element +o0, and a smallest element —co,
which do not belong to Z, and define Z*: = Z U
{—o0,, +00,}. The set,

L,(S,K):={T € L(ZY): T(S) c K}
is called the cone of positive operators from Z
toY.

For T € L(Z,Y) and G: X = Z U {+00,},
the composite mapping ToG:X - Y* is
defined by:

(T o G)00) = {T(G(x)) ifG(x) € Z,

+ ooy, if G(x) = +o0y.

Lemma 1 (Canovas et al., 2020, Lemma

2.1(i)). For all y,y' €Y and k, € K, there is
u>0suchthaty' € y — uk, + K.

Lemma 2. Let @+McY, y,€Y,

ko €K, po =inf{u € Riy, + uky € M + K}.
The following assertions hold true:

(D) po # +oo,
(ii) yo + uko € WinfM if and only if
U= Ho.
Proof. Let us denote
={u€eRiy,+uky €M+ K}

(i) Take m € M. Let y, and m play the
roles of y" and y in Lemma 1 respectively, one
gets the existence of u > 0 such that

Yo €Em — uky + K.

Then, yo+ukpem+KcM+K, and
hence, M # @ which yields p, # +oo.

(ii) Consider two following cases:

Case 1. M+ K =Y: Then, M =R and
Mo = —o. Furthermore as M + K =Y, one has

M+K=M+K+K=Y+K= Y, consequently,
VO EY, Ave M:v <k 7, (1)

which vyields WInfM = {—oo,} (see Remark
1). So, yo+ uko € WinfM if and only if
U= =0 = lo.

Case 2. M + K #Y: According to (i),
one has pg# +o. We will prove that
Uo # —oo. For this, it suffices to show that M
is bounded from below. Firstly, it is worth
noting that for an arbitrary y € Y, there exists
g €R satisfying ¥y €y, +jiky, +K (apply
Lemma 1 to y' =9 and y =y,). So, if we
assume that M is not bounded from below,
then there is f; € M (which also means
Yo + i1 ko € M + K) satisfying fi; < fi. This
yields ¥ € yo + fiko + K = (yo + flsko) + (f —
fdke+KcM+K)+K+K=M+K and
we get Y € M + K (as ¥ is arbitrary), which
contradicts the assumption M + K # Y.
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Note now that M + K # Y, (1) does not
hold true, WinfM # {—ooy,} (see Remark 1).
As M # @ we have WInfM # {+ooy}.

We prove that vy, + poky € WinfM.

First, we begin by proving y, + uok, € M + K.
To obtain a contradiction, suppose that

Yo + Uoko EM + K. Then, there is a
neighborhood U of 0y such that

y0+[l0k0+UCM+K

Take € > 0 such that —ek, € U, one gets
Yo+ (Uo —€)kg EM + K. This yields
Uo — € € M, which contradicts the fact that

Ho = inf M. SO, Yo + ﬂoko €M+ K, or
equivalently, v i vy + ok, for all v e M.
Second, let ¥ € Y such that y, + puoko <g 7.

Then, y, + uoko € ¥ — K, and hence, there is
a neighborhood V of 0, such that
Yo + toko +V € U — K. Take v > 0 such that
vko €V, one has y,+ (uo +v)ky € 7 — K,
which yields yy +v € M. Since py = inf M,
there is u, € M such that u, < puy +v. As
U, EM one has yo+ kg € M+K, or
equivalently, there exists k; € K such that
Yo + U2ko — ki € M. On the other hand,

Yo + Uzko — k4
= Yo + (Uo + V)ko + (12 — Ho
_V)ko_k1Eﬁ—K—K—K

o

=7 —K,

From what has already been proved we

It remains to prove that u=pu, Iif
Yo + uky € WInfM. It is easy to see that if

p>uo then y, +Ollk0 = Yo + Moko + (u —

Uo)ko EWINfM + K and if pu <y, then
Yo + tko = Yot toko + (1 — podko €
WinfM — K. So, it follows from the

decomposition

Y = (WInfM — K) UWInfM U (WInfM + K)
that y, + uky € WinfM whenever u # uy. O

We denote by L£(X,Y) the space of linear
continuous mappings from X to Y, and by 0,
the zero element of £(X,Y) (i.e., 0;(x) = Oy
for all x € X). The topology considered in
L(X,Y) is the one defined by the point-wise
convergence, i.e., for (Lg)qep € L(X,Y) and
LeL(X,Y), L, — L meansthat L,(x) - L(x)
inY forall x € X.

Let denote
Kt:={y*eY*:(y" k)= 0,Vk € K},

Kf:={y*eY*:(y* k)>0,Vk € K}.

The following basic properties are useful
in the sequel.

Lemma 3 (Nguyen et al., 2020, Lemma
2.3). It holds:

() K& + 0;
(i) K*\{0y+} = K.

3. Vector optimization problem and its
dual problem

Consider the vector optimization problem
of the model

(VP)  WMin{F(x):x € C,G(x) € =S},

where, as in previous sections, X,Y,Z are
IcHtvs, K is a closed and convex cone in Y
with nonempty interior, S is a closed, convex
cone in Z, F:X->Y*, G:X —» Z* are proper
mappings, and @ # C c X. Let us denote
A:=CNG71(=S) and assume along this
paper that A N domF # @, which also means
that (VP) is feasible.

The infimum value of the problem (VP) is
denoted by

val(VP): = WInf{F(x):x € C,G(x) € =5} (2)

A vector X € A such that F(x) € val(VP)
is called a solution of (VP). The set of all
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solutions of (VP) is denoted by sol(VP). It is
clear that val(VP) N F(A) = WMinF (A).

The characterizing set corresponding to
the problem (VP) is defined by Nguyen et al.
(2020)

H: = (G(x) + ) x (F(x) + K).
xeCndomFndomG

Let us denote p the conical projection
from ZxY to Y, ie, p(z,y) =y for all
(z,y) € Z x Y, and consider the following sets

Eqi:=p(H N ({02} x 1)), ©)

E,:=p(H n ({07} x V). (4)

Proposition 3 (Nguyen et al., 2019,
Propositions 3.3, 3.4). It holds:

() E; = F(AndomF) + K,
consequently, E; + K = E;,

(ll) ]EZ + K = ]Ez,

and

particular, E; and E, are both nonempty,
(iv) HN ({07} xY)={0}xE,
Proposition 4. val(VP) = WInfE;.

Proof. It follows from Proposition 3(i),
(2), and Remark 1 O

Nguyen & Dang (2018) introduced the
Lagrangian dual problem (VP*) of (VP) as
follows

(VP*) WSup WInf{F(x)+ (T > G)(x):x € C}.
TeLL(SK)

and

The supremum value of (VP*) is defined as

val(VP*):= WSup Winf{F(x)

TEL4(S,K)

+ (T oG)(x):x €C} |

Forany T € L, (S,K), set

M(T): = WInf{F(x) + (T o G)(x): x € C}.

We say that an operator T € L,.(S5,K) is a
solution of (VP*) if M(T) nval(VP*) = @
and the set of all solutions of (VP*) will be
denoted by sol(VP™).

Remark 3. Let D:= {(T,y) € L,(S,K) X

Yiyg (F+ToG)(C)+K} and  define
¢(T,y) =y for all (T,y) € D. According to
Nguyen et al. (2018, Remark 4), one has

val(VP*) = WSupf(D).

Moreover, it follows from Nguyen &
Dang (2018, Theorem 5) that weak duality
holds for pair (VP)— (VP*). Concretely, if
(VP) is feasible and val(VP*) # {—ooy} then
val(VP) c val(VP*) + K.

Proposition 5. Assume that F is K-
convex, that G is S-convex, and that C is a
convex subset of X. Then, one has val(VP*) =
WInfE, = Winf{y € Y:(0,,y) € H}, where
E, is given in (4).

Proof. [c] Take y € val(VP™), we will
prove that y € WInfE,.

(a;) Firstly, prove that y € E,. Assume
the contrary, i.e., that y ¢ E,, or equivalently,
(05, 7) ¢ H. Then, apply the convex
separation theorem, there are y; € Y* and
z; € Z* such that

V1Y) <(1.y) +(z1,2), V(zy) €H. (5)

e Prove that y; € K and z; € S*. Pick
now X € A N domF. Take arbitrarily k € K. It
is easy to see that (04, F(x) + 1k) € H for any
A= 0. So, by (5),

1, ¥) < {1, F(x) + k),
and hence,

V1 =0,

1
=017 = F(®) < i, k), VA2 0.

Letting A — +o0, one gains (y;, k) = 0.
As k is arbitrarily, we have y; € K*. To prove
yi € KF, in the light of Lemma 3, it is
sufficient to show that y; # Oy-. On the
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contrary, suppose that y; = 0y+. According to
(5), one has

(z1,2z) >0, V(z,y) € H.

This, together with the fact that (0,, F(x)) € H,
yields (z;, 0,) > 0, a contradiction.

We now show that z; € S*. Indeed, take
arbitrarily s €S. For any A1>0, one has
(G(x) + As,F(x)) € H, and hence, by (5)

1, ¥) <{y1, F(X)) + (21, G(x) + As),
V1=0,
which implies

1
7y = F(0)) = (21, G(0))) < (z1,s),
v1=0.
Letting A = 40, one gains (z;,s) = 0.
Consequently, z; € S™.
» We proceed to show that y € #(D) — K.

Indeed, pick k, € K. Since y; € K, it follows
that (y;, ko) > 0. Let T:Z - Y defined by

T(2) = %ko. Then, it is easy to check that
1.0
TeL,(S,K)andy]oT = z;.

Take x € C ndomF N domG. As
(G(x),F(x)) € H from (5), we have

(v, ¥) <1, F(x)) + (21, G(x)),
and hence, with the help of T,
V0¥ <L F)) + (1, (T 2 6) (%)),
or equivalently,
(v1,y —F(x) — (T > 6)(x)) <0,
So, there is € > 0 such that
Y1,y = F(x) = (T° G)(x)) + € <0,
or equivalently,

€
(1, ko) 0

As yi € K¢, the last inequality entails

Y1,y —F(x) — (T 6)(x) +

_ _ € °
y—F(x)—(T°G)(X)+%—kO>ko €K,

or equivalently,

_ € _ °
v+ o ko & F(x) + (T o G)(x) + K.

Hence, 5 + —— ko, € £(D) and we get
(y1'k0>

y € £(D) — K. This contradicts the fact that
y € val(VP*) = WSupf(D).  Consequently,
y € E,.

(ay)  Secondly, we next claim that
y¢[E,+ K. For this purpose, we take

arbitrarily k € K and show that y — k ¢ E,, or
equivalently, (04,7 — k) ¢ H.
As y €eval(VP*) = WSupf(D) and
y — %7& <x ¥, there is 3 € £(D) such that
y — %7& <x ¥, or equivalently,
y—skey—K. (6)
As ¥ € £(D), there exists T € L, (S,K)
such that
JeFx)+(ToG)(x)+K,
Vx € C ndomF N domG.

Moreover, by the convex assumption,

(F+ToG)(CNndomFNndomG)+K is a
convex set of Y (Nguyen Dinh et al., 2019,
Remark 4.1). Hence, the convex separation
theorem (Rudin, 1991, Theorem 3.4) ensures
the existence of y; € Y™ satisfying

(v, ) <{yo,v),

vv € (F+ T o G)(C ndomF NndomG) + K.

So, according to Nguyen Dinh et al.
(2019, Lemma 3.3), one gets y; € K and

(vo,7) < (o, (F + T 0 G)(x)),
Vx € C N domF N domG. (7)
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Take now (z,y) € H. Then, there is
X € C ndomF N domG such that
zEGX)+Sandy € F(X) + K. (8)
It is worth noting that T € £, (S,K), one
gets from (8) that
T(z)—(ToG)(®) € Kandy € F(¥) + K. (9)
Since y§ € K, it follows from (6), (7),
and (9) that (y5,7 — 2 k) < (5, 9),
(Y0, ¥) < (¥o, F(X) + (T ° G) (%)),

(6, ¥) = (5, F(®), and (v, T(2)) = (v5, (T © G)(2)).
From these inequalities,

V6,7 — kY < (5,5 — k) < (e, 7 + vy T,2)  (10)

(recall that (y;, k) > 0 as y; € K and k € K).
Note that (10) holds for any (z,y) € H. This
means that (0, % — k) is strictly separated
from H, and consequently, (0,7 —k) ¢ H
(see Zalinescu, 2002, Theorem 1.1.7).

(a3) Lastly, we have just shown that
y € E,\(E, + K). S0, ¥y € WMinE, c WInfE,.

[>] Take y € WInfE,, we will prove that
y € val(VP").

(B71) Firstly, take ¥ € Y such that y <g y.
Then, as ¥ € WInfE, one has y ¢ E,. We
now apply the argument in Step (a;) again,
with ¥ replaced by ¥ to obtain y € £(D) — K,
or in the other words, there is y' € £(D) such
that y <y y'.

(B2) Secondly, prove that y < y for all
y € (D). Suppose, contrary to our claim, that
there is y € £(D) such that ¥ <y y. Then,

there is k € K such that y + k = §. Hence,
y€£(D) and ¥ +-k <x y+k =. Letting
37+§l? and 9 play the roles of y —k and J
(respectively) in Step (a,) and using the same
argument as in this step, one gets (0,,7 + %12) ¢ H

which also means y + %IQ ¢ [E,. On the other

10

hand, since y <yx y +%I€, there is y;, € E,
such that y, <y y + %IQ, and consequently,

J+-key +KcE+K=E,

We get a contradiction,
y Xg y forall y € £(D).

(B3) Lastly, it follows from Steps (5;),
(B2) and the definition of weak supremum
that y € WSupf(D) = val(VP*). The proof
IS complete. O

and hence,

Remark 4. According to the proof of
Proposition 5, we see that if all the
assumptions of this proposition hold then one
also has val(VP*) = WMinkE,.

4. Zero duality gap
optimization problem

for vector

Consider the pair of primal-dual problems
(VP) and (VP™) as in the previous section.

Definition 1. We say that (VP) has weak
zero duality gap if val(VP) N val(VP*) = @
and that (VP) has a strong zero duality gap if
val(VP) = val(VP").

Theorem 1. Assume that F is K-convex,
that G is S-convex, and that C is a convex
subset of X. Then, the following statements
are equivalent:

() H N [{0z} X (yo + Rky)]
= H N [{02} X (¥o + Rky)]

for some y, € Y and k, € K

(i1) (VP) has a weak zero duality gap.

Proof. [(i))=(ii)] Assume that there are
Yo EY and k, € K satisfying

H N [{02} X (¥o + Rko)]
=H N [{02} X (¥o + Rkp)].

Let
/10 = lnf{/‘l e R: yo + /1k0 (S [E:l}

(11)
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(see Proposition 3). Then, according to Lemma
2, one has y,+ Agko € WInfE; which,
together ~ with  Proposition 4, yields
Yo + Aoky € val(VP).

We now prove that y, + Aok, € val(VP").
With the help of Lemma 2 and Proposition 5,
we begin by proving
Ao = inf{A € R:y, + Ak, € E, + K}

= inf{A € R:y, + Ak, € E,}
(see Proposition 3).
Set A'y: = inf{A € R:y, + Ak, € E,}.

As E; c E,, one has
Ao = Ay
Three following cases are possible:

Case 1. Ay = —c. Then, (12) vyields
Ay = —00 = A,.

Case 2.1, =+c. Then, one has
Ei N (yy + Rky) = 0, or equivalently,
H N [{0;} X (yo + Rky)] = @. This accounts
for HN [{0;} X (yo + Rky)] = @, and then,
by (11), one gets H N [{0;} x (yo + Rky)] = @
which vyields E, N (y,+ Rky) =@. So,
Ao =400 = A,.

Case 3. 15 € R. We claim that A’y = A,.
Conversely, by (12), suppose that A, > A',,.
Then, there is A; < A, such that y, + A,k, € E,,
or equivalently,

(0z,¥0 + A1ko) € H N [{02} X (yo + Rko)].
This, together with (11), leads to

(02,¥0 + A1ko) € H N [{02} X (¥ + Rkg)]
and hence,

(2 x [yo + Aoko — K|) 0 (BN [0} X (30 +
Rko)}]) # O
(as Z x [yo + Aoky — K] is a neighborhood of

(04, y0 + A1ky)). Consequently, there is
Ay < Ao such that (04, y, + Aky) € H which
yields y, + A,k, € E;. This contradicts the
fact that 1, = inf{A € R: y, + 1k, € E;}.

SO, AO = /1’0.

(12)

In brief, we have just proved that
Yo + Aok € val(VP) nval(VP*) which also
means that val(VP) n val(VP*) # Q.

[(i)=(1))] Assume that
Yo € val(VP) nval(VP*). Pick

ko, € K. We now prove that

there is
arbitrarily

H N [{02} X (yo + Rky)]
= H N [{02} X (o + Rko)].
It is easy to see that

(13)

H N [{02} X (¥ + Rko)] < H N [{0} X (v + Rky)]

and that H N [{0,} X (y, + Rko)] is a closed
set. So, the inclusion “c” in (13) holds trivially.
For the converse inclusion, take arbitrarily
(02, y0 + Ako) € H N [{07} X (yo + Rkg)] we
will prove that

(0z,y0 + Ako) € H N [{07} X (¥o + Rky)].
As (0;,v, + 1k,) € H we have y, + 1k, € E,,

which implies that 1> inf{A € R:y, + Ak, € E,}.

On the other hand, it holds y, € val(vp*) = WinfE,

(see Proposition 5), and hence,

inf{A € R:y, + 1k, € E,} =0 (see Lemma 2).

So, one gets A > 0, which yields

Yo <k Yo+ (1+1) ke, VnEN'. (14)

Note that, one also has y, e val(P) = WinfE,.
So, for each n € N*, it follows from (14) and
the definition of infimum that the existence of

y, € E; such that y, <y vy, + (Z + %) ko, and
consequently, yo+ (1+2)ko € Ey + K C Ey + K = Ey
(see Proposition 3) which yields

(02,50 + (/T + %) ko) € H N [{02} X (yo + Rko)].
As  (0z,y0 + (Z + %) ko) = (02,0 + Ako)
we obtain

(02, ¥0 + Ako) € H N [{04} X (yo + Rko)].
The proof is complete. O

We now recall the qualification condition
(Nguyen et al., 2020)

(CQ) HN ({0z}xY)=Hn ({0} xY).

11
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We now study the results on a strong zero
duality gap between the problem (VP) and its
Lagrange dual problems, which are established
under the condition (CQ) without using
Farkas-type results while the such ones were
established in Nguyen et al., 2020, where the
authors have used Farkas-type results for
vector optimization under the condition
(CQ) to obtain the ones (see Nguyen et al.,
2020, Theorem 6.1). We will show that it is
possible to obtain the ones by using the convex
separation theorem (through the use of
Proposition 5 given in the previous section).
The important point to note here is the use of
the convex separation theorem to establish the
Farkas-type results for vector optimization in
Nguyen et al., 2020 while the convex
separation theorem to calculate the supremum
value of (VP*) in this paper.

Theorem 2. Assume that val(VP*) # {—ooy}.
Assume further that F is K-convex, that G is S-

convex, and that C is convex. Then, the
following statements are equivalent:

(i) (€CQ) holds,
(ii) (VP) has a strong zero duality gap.

Proof. [(i) = (ii)] Assume that (i) holds.
Since p is continuous, we have

p (MN[0 x Y1) € p(H N [{03 x Y]) = ;.

As (i) holds, it follows from Proposition
3(iv) that E, c E,. Recall that E;,E, are
nonempty subset of Y (by the definition of
E{,E, and Proposition  3(iii)). So,
WInfE, # {+o,} and E, c Y, and then,
Proposition 2 shows that winfE, c Winf(E;) + K.
Noting that WiInf(E,) = WInfE, (Nguyen
Dinh et al., 2017, Proposition 2.1(iv)). Hence,
WInfE, c WInfE; + K. Combining this
with the fact that val(P) = WInfE; and
val(VP*) = WInfE,, we get val(VP*) c val(VP) + K.

As K + K = K we have

val(VP*) + K c val(VP) + K. (15)

12

On the other hand, by the weak duality
(see Remark 3), one has val(vp) + k c val(VP") + K,
which, together with (15), gives val(VP) +
K = val(VP*) + K, and (ii) is achieved, taking
(Lohne, 2011, Corollary 1.48) into account.

[(ii)) = (i)] Assume that (ii) holds, we
will prove that (i) holds. It is clear that

HN[{0,}xY]cHN{0,}xY). (16)

So, we only need to show that the
converse inclusion of (16) holds. Take

(0,4, %) € H. Then, one has y € E,.

Assume that val(VP) = {—oy}. Then, in the
light of Proposition 4, one has WinfE, = {—w}
which also means that Y =E; +K (see
Remark 1). Observing that E; + K = E;,
consequently, Y = ;. This entails y € E,, or
equivalently, (0z,y) € H showing that

(02,y) € HN[{0z} x Y].

Assume that val(VP) # {—ooy}. Then, as
(i) holds, from Propositions 4 and 5,
WiInfE, = val(VP) = val(VP*) = WInfE, # {—ooy}.
By the decomposition
(see Proposition 1) and the fact that
E, n (WInfE, — K) = @ (see Remark 2), one
gets E, c WInfE, + K. So, there are
yo € WInfE, and k € K such that y = y, + k.

Pick k, € K. For each n € N*, one has
< +E+1k —‘+1k
Yo <k Yo n 0o=Y o

This, together with the fact that
Yo € WInfE, = WInfE, yields the existence
of sequence {ynlnen € E; such that

Vo <k ¥ +%k0 forall n € N*.

Then, ¥+ =k, € E, +KcCE, +K=E,
(see Proposition 3) which is equivalent to
(0z,y + %ko) €EHN[{0;} xY]. Here, note
that (0z,y + %ko) - (0z,¥), we obtain
(0z,y) € HN [{0;} x Y], which is desired. [
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Remark 5. It is worth mentioning that
when we take Y=R, K=R, C=P, f() =(c),
G(-) = —A(-) + b, the problem (VP) collapses
to the problem (ILP) in Pham et al. (2019).
Then, the result on strong duality for the
problem (ILP) in Pham et al. (2019, Theorem
4.3) follows from Theorem 2.

Let us now introduce the second
qualification condition, saying that H is closed
regarding the set {0,} x Y, concretely,

(CQuis) HN ({07} xY)=Hn ({0} xY).

Theorem 3. Assume that the problem
(VP) is feasible and wval(VP*) # {—ooy}.
Assume further that F is K-convex, that G is S-
convex, and that C is a convex set of X. If the
condition (CQy;s) holds then the problem (VP)
has a strong zero duality gap.

Proof. According to Proposition 4 and
Proposition 5, we have val(VP) = WInfE;
and val(VP*) = WInfE,. As (CQyp;s) holds,
one finds that [E; = E,. Consequently, one has
val(VP) = val(VP"). O

The following example shows that the
converse implication in Theorem 3 does not hold.

Example 1 Let X =R, Y =R? Z =R,
K =R%,S=R,, and C =]0,2[. Let F: R - R?
and G: R — R be such that F(x) = (x,1 — x)
and G(x) = x? —1 for all x € R. It is easy to
see that F is K-convex, that G is S-convex, and
C is convex. In this case, we have

H = G+ S X (F(x)+K)
xeCndomFndomG
_ U (2 —1+R,) X ((x,1—x) + R2).
x€]0,2[

By some calculations, we obtain
HN{0;}xY)={0} x ({(x,y):0<x <1,
y=1-—x}U([1,+0o[X [0, +0)),

HN ({0} xY)={0}x ({(x,y):0<x <1,
y=1—x}U([1,+00[X [0, +0)).

On the other hand,

val(VP)

=WInf{F(x):x € C,G(x) € =S}
=Winf{(x,1 —x):x €]0,1]}

= ({0} X [1,4+o[U{(x,1 —x):x € [0,1]} U
([1, +oo[x {0}),

WMinF (4) = {(x,1 — x):x €]0,1]}, and
val(VP*)

= WInfE,

= ({0} x[1,+0)U{(x,1—-x):x €[0,1]}U
([1, +oo[x {03}).

It is clear that the converse implication in
Theorem 3 does not hold.

5. A special case: Linear programming

In the this section, as an illustrate example
for the results established above, we consider a
special case of the problem (VP), that is the
linear programming:

(LP) inf(c,x) s.t x € X, A(x) —w € =S

where ceX*, A€ L(X,Z), and w € Z.
Observing that the problem (VP) collapses to
the problem (LP) when we take Y =R,
K=R; C=X, f() =(cr), G() = A() —w.
Then, the corresponding characterizing set of
(LP) is

H; = {(A(x),{(c,x)):x € X} + [S — w] X R,.
The qualification condition (CQ) now is
(CQLP) H, N ({02} X R) = H, N ({07} X R).

Recall that the Lagrange dual problem of
(LP), denoted by (LDY), is

(LDY) sup[—(1,w)] s.t.A € ST, 14 = —c.

It is worth mentioning that the problem
(LP) is a special case of the linear
programming problem (IP) in Anderson (1983)
and the problem (ILP) in Pham et al. (2019)
where P = X. The duality for the problem
(ILP) was considered in Anderson (1983)
under the closedness conditions. Recently,
Pham et al. (2019) had studied the duality for

13
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the problem (ILP) under some necessary and
sufficient conditions.

We now introduce a new type of dual
problem of (LP) called the sequential dual
problem as follows:

(LDS) sup |—limsup{d,, w}| s.t. (1) nen*
n—-0o
c St 1,A=—c,Vn €N

The relations between the values of the
problem (LP) and its dual problems are given
by the following proposition.

Proposition 6. It holds:
sup(LDY) < sup(LD®) < inf (LP).
Proof.

e Prove that sup(LDY) < sup(LD%): It is
easy to see that

sup(LDL) = sup{—limsup{4,, w): (1)) nen* € D1}
n—-oo

sup(LDS) = sup{—limsup(4,, w): (1) nen* € Ds}

n—-oo

where

D= {(Ad)nen» €S 4y = 1E ST,
vn € N, 14 = —c}

Dy: = {(An)nEN* c S+:AnA = —C,
vn € N*}

Obviously, D, € Ds. SO, sup(LDY) < sup(LD9).

e Prove that sup(LD®) < inf(LP): Take
(A)nen* € Ds and x € X such that A(x) —w € -S.
Then, (1, w) = (1,,A(x)) = —(c,x) for all
n € N*, and hence,

limsup,,,e {4y, @) = —(c, x),
or, —limsup,_, {1, @) < {(c, x).

The desired inequality follows from the
definition of the problems (LP) and (LDS). O

The next result extends (Pham et al., 2019,
Theorem 4.3) in the case when taking P = X.

Corollary 3. The following statements are
equivalent:

14

(1) (CQLP) holds,
(ii) sup(LDY) = sup(LDS) = inf(LP).
Proof. Firstly, by Proposition 6, (ii) is

equivalent to (ii") sup(LDY) = inf(LP). The
conclusion now follows from Theorem 2. [

We next introduce a sufficient condition,
which ensures the fulfillment of the condition
(CQLP), and then, leads to the results on zero
duality gap for the pairs (LP) -
(LDY) and (LP) — (LD®).

Proposition 7. Assume that there are
Ao € S* and x, € X such that

AoA = —c, (14)

A(xy) € w — S and 1pA(xg) = (Ay, w) (15)
Then, (CQLP) holds.

Proof. It is sufficient to prove that
H, n ({0;} x R) c H, n ({0;} x R). To do
this, take (0,,7) € H,. We will show that
(05, 7) € H;, n({0;} x R). Indeed, since
(04,7) € H,, it follows that there exists a net
(Zao» To» X ) wer © Z X R X X such that

(16)
(7)

(Zay 7o) = (0z,7)
Zg EA(x,) —w+Sand 1, =(c,x,), Va el

Assume that there are 1, € S* and x, € X
such that (14) and (15) holds. This, together
with  (17), leads to the fact that
(Ao, Za) 2 —(€, Xq) — (Ao, W) = —Tg — (o, W)
forall a € I.

Since z, - 0, and r,, — r, it follows from
the above inequality that 0 > —r — (1,, ).
This, together with the last one of (15) and
(14), one gets

0 2 —-r — <Ao,(1))
= —1 — ApA(xy) = —1 +{(c, Xg),

or equivalently, r = {c, x,). From this and the
first one of (15), we obtain
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(0z,7) € Hy N ({02} X R),

and hence, (0z,7) € H; n ({0} X R)

as desired. O
The next result is a direct consequence of

Proposition 7 and Corollary 3.

Corollary 4. Assume all the assumptions
of Proposition 7 hold. Then, one has

sup(LDY) = sup(LD®) = inf(LP).

Corollary 5. Assume that the following
conditions hold:

(C,) The problem (LDY) is feasible, i.e.,
there is A, € S* such that 1,4 = —c.

(C) w € ACX).
Then, sup(LDY) = sup(LDS) = inf(LP).

Proof. The fulfillment of (C;) means that
there is A, € S* such that (14). As (C,) holds,
there exists x, € X such that w = A(xy). This
leads to the fact that (15) holds. The
conclusion now follows from Corollary 4. O

Corollary 6. Assume that (C;) and one of
the following condition holds:

(C3) w=0g.
(C,) Aisasurjection.
Then, sup(LDY) = sup(LD%) = inf(LP).

Proof. It is easy to see that if at least one
of the conditions (C5) and (C,) holds then (C,)
holds as well. So, Corollary 6 is a consequence
of Corollary 5. O
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