
Natural Sciences issue

42

THE JACOBSON RADICAL TYPES OF LEAVITT PATH ALGEBRAS

WITH COEFFICIENTS IN A COMMUTATIVE UNITAL SEMIRING

Le Hoang Mai

Department of Mathematics Teacher Education, Dong Thap University, Vietnam

Email: lhmai@dthu.edu.vn

Article history

Received: 08/6/2020; Received in revised form: 26/6/2020; Accepted: 03/7/2020

Abstract

In this paper, we calculate the J radical and
s
J radical of the Leavitt path algebras with

coefficients in a commutative semiring of some finite graphs. In particular, we calculate J

radical and 
s
J radical of the Leavitt path algebras with coefficients in a field of acyclic graphs,

no-exit graphs and give applicable examples.
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Tóm tắt

Trong bài viết này, chúng tôi tính J căn và 
s
J căn của đại số đường đi Leavitt với hệ số

trên một nửa vành có đơn vị giao hoán của một số dạng đồ thị hữu hạn. Trong trường hợp đặc

biệt, chúng tôi tính J căn và 
s
J căn của đại số đường đi Leavitt với hệ số trên một trường của

lớp các đồ thị không chu trình, lớp các đồ thị không có lối rẽ và cho các ví dụ áp dụng.

Từ khóa: Đồ thị không chu trình, J căn của nửa vành, 
s
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1. Introduction 

Bourne (1951) defined the J radical of a 

hemiring based on left (right) semiregular ideals 

and, subsequently, Iizuka (1959) proved that 

this radical can be determined via irreducible 

semimodules. Katsov and Nam (2014) defined 

the s
J radical for hemirings using simple 

semimodules and obtained some results on the 

structure of additively idempotent hemirings 

through this radical. Recently, Mai and Tuyen 

(2017) have used the concepts of J radical 

and s
J radical of hemiring to study the 

structure of some hemirings. The concepts and 

results related to J radical and s
J radical 

of hemirings can be found in Bourne (1951), 

Iizuka (1959), Katsov & Nam (2014), Mai & 

Tuyen (2017). 

Given a (row-finite) directed graph E  and 

a field ,K  Abrams and Pino (2005) introduced 

the Leavitt path algebra ( ).KL E
 These Leavitt 

path algebras are a generalization of the 

Leavitt algebras (1, )KL n  of Leavitt (1962). 

Tomforde (2011) presented a straightforward 

generalization of the constructions of the 

Leavitt path algebras ( )RL E
 with coefficients 

in a unita commutative ring R  and studied 

some fundamental properties of those algebras. 

Katsov et al. (2017) continued to generalize the 

Leavitt path algebras ( )RL E
 with coefficients 

in a commutative semiring R  and studied 

some fundamental properties, especially, they 

studied its ideal-simpleness and congruence-

simpleness. The concepts and results relating 

to the Leavitt path algebras ( )KL E
 of the graph 

E with K is a field, unita commutative ring or 

commutative semiring can be found in Abrams 

& Pino (2005), Tomforde (2011), Katsov et al. 

(2017), Abrams (2015), Nam and Phuc (2019).  

In this paper, we study the J radical and 

the 
s
J radical for the Leavitt path algebras 

( )RL E
 of directed graphs E

 with coefficients 

in a commutative semiring .R  Specifically, we 

calculate the J radical and the 
s
J radical for 

the Leavitt path algebras ( )RL E
 with 

coefficients in a commutative semiring R  of 

some finite directed graphs .E  In particular, we 

calculate the J radical and the 
s
J radical for 

the Leavitt path algebras ( )KL E
 with 

coefficients in a field K of acyclic graphs, no-

exit graphs and applicable examples. 

We will present the main results in 

Section 4. In Sections 2 and 3, we will briefly 

present the necessary preparation knowledge in 

this article. 

2. J radical and s
J radical of semirings 

In this section, we survey some concepts 

and results from previous works (Golan, 1999; 

Iizuka, 1959; Katsov & Nam, 2014; Mai & 

Tuyen, 2017) and use them in the main section 

of this article. First, we recall the J radical 

and the 
s
J radical concepts of hemirings. 

A hemiring R  is an algebra ( , ,.,0)R  such 

that the following conditions are satisfied:  

(a) ( , ,.,0)R  is a commutative monoid 

with identity element 0;   

(b) ( ,.)R  is a semigroup;  

(c) Multiplication distributes over addition 

on either side;  

(d) 0 0 0r r  for all .r R  

A hemiring R  is called a semiring if its 

multiplicative semigroup ( ,.,1)R  is a monoid 

with identity element 1.  

Note that, if R is a ring then, it is also a 

hemiring; otherwise, it is not true. 

A left R semimodule M
 

over a 

commutative hemiring R  is a commutative 

monoid ( , ,0 )MM  together with a scalar 

multiplication ( , )r m rm  from R M  to M  
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which satisfies the identities: for all , 'r r R  

and , ' :m m M  

(a) ( ') ';r m m rm rm  

(b) ( ') ' ;r r m rm r m  

(c) ( ') ( ' );rr m r r m  

(d) 0 0 0 .
M M
r m  

If R  is a semiring with identity element 

1 0  and 1m m  for all m M  then M  is 

called unita left R semimodule. 

An R algebra A  over a commutative 

semiring R  is a R semimodule A  with an 

associative bilinear R semimodule 

multiplication “.” on .A  An R algebra A  is 

unital if ( ,.)A  is actually a monoid with a 

neutral element 1 ,A A  i.e., 1 1 A Aa a a  

for all .a A  For example, every hemiring is 

an  algebra, where  is the commutative 

semiring of non-negative integers.  

Let R  be a commutative semiring and 

 | ix i I  be a set of independent, non-

commuting indeterminates. Then, | iR x i I  

will denote the free R algebra generated by 

the indeterminates  | ,ix i I  whose elements 

are polynomials in the non-commuting 

variables  | ix i I  with coefficients from R  

that commute with each variable  | .ix i I  

Iizuka (1959) used a class of irreducible 

left semimodule to characterize the J radical 

of hemirings. A nonzero cancellative left 

semimodule M  over a hemiring R  is 

irreducible if for an arbitrarily fixed pair of 

elements , 'u u M  with 'u u  and any 

,m M  there exist , 'a a R  such that  

' ' ' ' .m au a u au a u  

Theorem 2.1. [Iizuka (1959), Theorem 8]. 

Let R  be a hemiring. Then, J radical of 

hemiring R is  

( ) {(0 : ) | },J R M M  

where (0 : ) { | 0}M r R rM  is a ideal of 

R  and  is the class of all irreducible left 

R semimodules. 

When ,  ( )J R R  by convention. 

The hemiring R is said to be J semisimple if 

( ) 0.J R  

Katsov and Nam (2014) used a class of 

simple left R semimodules to define the 
s
J

radical of hemirings. A left R semimodule 

M  is simple if the following conditions       

are satisfied:  

(a) 0;RM  

(b) M  has only two trivial 

subsemimodules; 

(c) M  has only two trivial congruences. 

Let R  be a hemiring, subtractive ideal 

( ) {(0 : ) | '}
s
J R M M  is called 

s
J radical 

of hemiring ,R  where '  is a class of all 

simple left R semimodules.  

When ' ,  ( )
s
J R R  by convention. 

The hemiring R is said to be 
s
J semisimple if 

( ) 0.
s
J R  

Remark 2.2. If R  is a hemiring and is 

not a ring, then generally ( ) ( )
s

J R J R
 
and if R  

is a ring then ( ) ( ),
s

J R J R  it is called the 

Jacobson radical in ring theory. In particular, 

if K  is a field then ( ) ( ) 0.
s

J K J K
 

Theorem 2.3. [Katsov & Nam (2014), 

Corollary 5.11]. For all matrix hemirings 

( ), 1,
n
M R n  over a hemiring ,R  the following 

equations hold: 

(a) ( ( )) ( ( ));
n n

J M R M J R  
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(b) ( ( )) ( ( )).
s n n s
J M R M J R  

Theorem 2.4. [Mai & Tuyen (2017), 

Corollary 1]. Let R be a hemiring and 
1 2,R R  

be its subhemirings. If 
1 2R R R  , then 

1 2( ) ( ) ( )J R J R J R   and 
1 2( ) ( ) ( ).s s sJ R J R J R   

3. The Leavitt path algebras  

In this section, we survey some concepts 

and results from previous works (Abrams & 

Pino, 2005; Katsov et al., 2017; Abrams, 

2015), and use them in the main section of this 

article. First, we recall the Leavitt path 

algebras having coefficients in an arbitrary 

commutative semiring. 

A (directed) graph 0 1( , , , )E E E s r  

consists of two disjoint sets 
0E  and 1E - 

vertices and edges, respectively - and two 

maps 1 0, : .r s E E  If 1,e E  then  s e  and 

 r e  are called the source and range of ,e  

respectively. The graph E
 is finite if 

0  E  and 
1 . E  A vertex 0v E

 
for 

which 1(v)s  is empty is called a sink; and a 

vertex 0v E  is regular if 10 (v) .  s  In 

this article, we consider only finite graphs. 

A path 
1 2... np e e e  in a graph E  is a 

sequence of edges 
1

1 2, ,..., ne e e E  such that 

   1i ir e s e   for 1,2,..., 1. i n  In this case, 

we say that the path p  starts at the vertex 

  1: ( )s p s e  and ends at the vertex 

 ( ) : ,nr e r p  and has length .p n  We 

consider the vertices in 
0E  to be paths of 

length 0. If   ( ),s p r p  then p  is a closed 

path based at   ( ). v s p r p  If 1 2... nc e e e  is 

a closed path of positive length and all vertices 

1 2( ), ( ),..., ( )ns e s e s e  are distinct, then the path c  

is called a cycle. An edge f  is an exit for a 

path 
1 2... np e e e  if ( ) ( ) is f s e  but  if e  

for some 1 . i n  

A graph E  is acyclic if it has no cycles. 

A graph E  is said to be a no-exit graph if no 

cycle in E  has an exit. 

Remark 3.1. If E is a finite acyclic 

graph, then it is a no-exit graph, and the 

converse is not true in general.      

Definition 3.2 [Katsov et al. (2017), 

Definition 2.1]. Let 0 1( , , , )E E E s r  be a graph 

and R  be a commutative semiring. The Leavitt 

path algebra ( )RL E  of the graph E  with 

coefficients in R  is the R algebra presented 

by the set of generators 10 1 *( )  E E E where 
*1 1 *( ) , ,E E e e  is a bijection with 

0 1 1 *, , ( )E E E  pairwise disjoint, satisfying the 

following relations:  

(1) , v wvw w  (  is the Kronecker 

symbol) for all 
0;, v w E  

(2) ( ) ( )s e e e er e   and * * *( ) ( )r e e e e s e   
for all 1;e E  

(3) *

, ( ) e fe f r e
 
for all 1;, e f E  

(4) 
1

*

( )e s v

v ee


   whenever 0v E  is      

a regular.  

The following are two structural theorems 

of the Leavitt path algebras over any field K

of acyclic graphs, no-exit graphs and 

applicable examples. 

Theorem 3.3 [Abrams (2015), Theorem 

9]. Let E  be a finite acyclic graph and K  any 

field. Let 1,..., tw w  denote the sinks of E (at 

least one sink must exist in any finite acyclic 

graph). For each ,iw let in  denote the number 

of elements of path in E  having range vertex 

iw  (this includes iw  itself, as a path of length 

0). Then  
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1
( ) ( ).


 

i

t

K n
i

L E M K  

Example 3.4. Let K be a field and E  a 

finite acyclic graph has form 

 
Figure 1 

E  has two sinks 1 2{ , },v v  1v  has two paths 

1{ , }v e  having range vertex 1v  and 2v  has two 

paths  2 ,v f  having range vertex 2 .v  From 

Theorem 3.3, we have  

2 2( ) ( ) ( ). KL E M K M K  

Theorem 3.5 [Nam and Phuc (2019), 

Corollary 2.12]. Let K  be a field, E  a finite 

no-exit graph, 1{ ,..., }lc c  the set of cycles, and 

1{ ,..., }kv v  the set of sinks. Then 

1

1 1
1 1

( ) ( ( )) ( ( [ , ])),
i j

k l

K m n
i j

L E M K M K x x

 
 

     

where for each 1 , i k  im  is the number of 

path ending in the sink ,iv  for each 1 , j l  

jn  is the number of path ending in a fixed 

(although arbitrary) vertex of the cycle jc  

which do not contain the cycle itself and 
1[ , ]K x x  Laurent polynomials algebra over 

field .K  

Example 3.6. Let K  be a field and E  a 

finite no-exit graph has form  

 
Figure 2 

E  has only one cycle 0 ,e  no sink and one path 

1e  other cycle 0e  having range vertex 0 .v  

From Theorem 3.5 deduced  

1

2( ) ( [ , ]).KL E M K x x
 

Remark 3.7. From Remark 3.1, Theorem 

3.3 is a corollary of Theorem 3.5. 

 

4. Main results 

In this section, we calculate the J
radical and the 

s
J radical for the Leavitt path 

algebras ( )RL E
 with coefficients in a 

commutative semiring R  of some finite 

directed graphs .E  In particular, we calculate 

the J radical and the 
s
J radical for the 

Leavitt path algebras ( )KL E
 with coefficients 

in a field K of acyclic graphs, no-exit graphs 

and applicable examples. 

Proposition 4.1. Let R  be a commutative 

semiring and 0 1( , , , )E E E s r  a graph has form 

 
Figure 3 

i.e., 0 { }E v  and 
1 { }.E e  Then 

1( ( )) ( [ , ])RJ L E J R x x  và  

1( ( )) ( [ , ]),s R sJ L E J R x x
 

where 1[ , ]R x x  is a Laurent polynomials 

algebra over semiring .R  

Proof. It is well known that 
*( ) , ,RL E R v e e  is a Leavitt path algebra 

generated by set 
*{ , , }v e e  and Laurent 

polynomials algebra 1[ , ]R x x  generated by 

set 
1{ , }.x x  Consider the map  

1: ( ) [ , ]Rf L E R x x  

determined by ( ) 1f v  , ( )f e x  and 
* 1( ) .f e x  Then, it is easy to check that f  is 

an algebraic isomorphism, i.e., 

1( ) [ , ],RL E R x x  

the proof is completed.                                    □ 

Proposition 4.2. Let R  be a commutative 

semiring and 0 1( , , , )E E E s r  a graph has form   
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Figure 4 

 i.e., 0 { }E v  and 1

1 { ,..., }nE e e  with 1.n  

Then  

1,( ( )) ( ( ))R nJ L E J L R  and 

1,( ( )) ( ( )),s R s nJ L E J L R  

where 1, ( )nL R  is a Leavitt algrbra type  1, .n  

Proof. It is well known that 
* *

1 1( ) , ,..., , ,...,R n nL E R v e e e e  is a Leavitt path 

algebra generated by set  * *

1 1, ,..., , ,...,n nv e e e e  

and 1, 1 1( ) ,..., , ,..., ,n n nL R R x x y y  where 

i j ijx y   and 
1

1
n

i i
i

x y


   for 1 , , i j n  is a 

Leavitt algebra type  1, .n  Consider the map  

1,: ( ) ( )R nf L E L R  

Determined by ( ) 1f v  , ( )i if e x  and 
*( )i if e y  for each 1 . i n  Then, it is easy to 

check that f  is an algebraic isomorphism, i.e., 

1,( ) ( ),R nL E L R  the proof is completed.            □                                                                                                                                                                              

 Proposition 4.3. Let R  be a commutative 

semiring and 0 1( , , , )E E E s r  a graph has form 

 

Figure 5 

 i.e., 1

0 { ,..., }nE v v  and 1

1

1{ ,..., }ne eE   with 

2.n  Then  

( ( )) ( ( ))R nJ L E M J R  và ( ( )) ( ( )),s R n sJ L E M J R  

 where ( )nM R  is a matrix algebra over 

semiring .R   

Proof. It is well-known that 
* *

1 1 1 1 1( ) ,..., , ,..., , ,..., R n n nL E R v v e e e e  is a 

Leavitt path algebra generated by set 

 * *

1 1 1 1 1,..., , ,..., , ,..., n n nv v e e e e  and 

 ,( ) |1 , ,  n i jM R R E i j n   

is a matrix algebra generated by set 

 , |1 , , i jE i j n  where 
,i jE  are the standard 

elementary matrices in the matrix semiring 

( ).nM R  Consider the map  

: ( ) ( )R nf L E M R  

determined by ,( )i i if v E , , 1( )i i if e E   and 
*

1,( )i i if e E   for each 1 . i n  Then, it is easy to 

check that f  is an algebraic isomorphism, i.e., 

( ) ( ).R nL E M R  Thence inferred 

( ( )) ( ( ))R nJ L E J M R  and ( ( )) ( ( )).s R s nJ L E J M R  
From Theorem 2.3, the proof is completed.    □                                                                                                                       

Proposition 4.4. Let R  be a commutative 

semiring and 0 1( , , , )E E E s r  a graph has form 

 
Figure 6 

i.e., 1

0

1{ , ,..., }nE v w w   and 1

1

1{ ,..., }ne eE   with 

2.n  Then ( ( )) ( ( ))R nJ L E M J R  and 

( ( )) ( ( )),s R n sJ L E M J R  where ( )nM R  is a matrix 

algebra over semiring .R  

Proof. It is well-known that 
* *

1 1 1 1 1 1( ) , ,..., , ,..., , ,...,  R n n nL E R v w w e e e e  is 

a Leavitt path algebra generated by set 

 * *

1 1 1 1 1 1, ,..., , ,..., , ,..., .  n n nv w w e e e e
 Consider  

the map 

: ( ) ( )R nf L E M R  

determined by 1,1( ) f v E , 1, 1( )i i if w E   , 

,( )i i nf e E  and 
*

,( )i n if e E  for each 

1 1.  i n  Then, it is easy to check that f  is 

an algebraic isomorphism, i.e., ( ) ( ).R nL E M R  

Thence it infers 
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( ( )) ( ( ))R nJ L E J M R  and ( ( )) ( ( )).s R s nJ L E J M R  

From Theorem 2.3, the proof is completed.    □ 

Corollary 4.5. Let R  be a commutative 

semiring and 0 1( , , , )E E E s r  a graph has form 

Figure 5 or Figure 6. Then 

(a) If R   then ( ( )) ( ( )) 0, sJ L E J L E  

where  is the commutative semiring of non-

negative integers.  

(b) If R  be a unita commutative ring, then 

( ( )) ( ( )) ( ( )), R s R nJ L E J L E M J R  where ( )J R  is 

a Jacobson radical of ring .R  

(c) If K  is a field, then 
( ( )) ( ( )) 0. K s KJ L E J L E  

Proof. (a) According to Lemma 5.10 of 

Katsov & Nam (2014), ( ) ( ) 0.sJ J   

(b) Since R  is a ring, ( ) ( ).sJ R J R       

(c) Since K  is a field, 

( ) ( ) 0.sJ K J K   

From Proposition 4.3 or Proposition 4.4, 

the proof is completed.                   □ 

Theorem 4.6. Let K be an any field, E  a 

finite no-exit graph, 1{ ,..., }lc c  the set of cycles, 

and 1{ ,..., }kv v  the set of sinks. Then 

(a)  1

1
1

( ( )) ( ( [ , ])),




 
j

l

K n
j

J L E M J K x x  

(b)  
1

1
1

( ( )) ( ( [ , ])),




 
j

l

s K n s
j

J L E M J K x x  

where for each 1 , j l  jn  is the number of 

path ending in a fixed (although arbitrary) 

vertex of the cycle jc  which do not contain the 

cycle itself and 1[ , ]K x x  Laurent polynomial 

algebra over field .K  

Proof. From Theorem 3.5, we have  

1

1 1
1 1

( ) ( ( )) ( ( [ , ])),

 
 

   
i j

k l

K m n
i j

L E M K M K x x  

where 1{ ,..., }lc c  the set of cycles, and 1{ ,..., }kv v  

the set of sinks for each 1 , i k  im  is of path 

ending in the sink ,iv  for each 1 , j l  
jn  is 

the number of path ending in a fixed (although 

arbitrary) vertex of the cycle 
jc  which do not 

contain the cycle itself. 

From Theorem 2.4, we have 

1

1 1
1 1

( ( )) ( ( ( ))) ( ( ( [ , ]))),

 
 

   
i j

k l

K m n
i j

J L E J M K J M K x x

1

1 1
1 1

( ( )) ( ( ( ))) ( ( ( [ , ]))).

 
 

   
i j

k l

s K s m s n
i j

J L E J M K J M K x x

From Theorem 2.3, we have 

1

1 1
1 1

( ( )) ( ( ( ))) ( ( ( [ , ]))),

 
 

   
i j

k l

K m n
i j

J L E M J K M J K x x

1

1 1
1 1

( ( )) ( ( ( ))) ( ( ( [ , ]))).

 
 

   
i j

k l

s K m s n s
i j

J L E M J K M J K x x

From K  is a field and Remark 2.2, we have 

( ) ( ) 0, sJ K J K  the proof is completed.        □ 

Example 4.7. (a) Let K  be field and E  a 

graph has form Figure 3. Since graph E  in 

Figure 3 is no-exit, there exists only one cycle 
,e  no sink and not path other cycle e  having 

ending in vertex .v  From Theorem 4.6, we 

have 1( ( )) ( [ , ])KJ L E J K x x  and 

1( ( )) ( [ , ]).s K sJ L E J K x x  

This result is also the result in Proposition 

4.1 when the commutative semiring R  is a field.  

(b) Let K  be a field and E  a graph has 

form Figure 4. Since graph E  in Figure 4 is no-

exit, there is n  cycles je  for each 1 , j n  no 

sink and for each 1 , j n  has 1n  paths 

other cycle je  having ending vertex v  in cycle 

.je  From Theorem 4.6, we have 
1 1( ( )) ( ( [ , ])) ... ( ( [ , ])),   K n nJ L E M J K x x M J K x x
1 1( ( )) ( ( [ , ])) ... ( ( [ , ])),   s K n s n sJ L E M J K x x M J K x x

the directed sum of the right hand side has n  
terms. This result is also the result in 

Proposition 4.2 when the commutative 

semiring R  is a field, because   

1 1

1, ( ) ( [ , ]) ... ( [ , ]).   n n nL K M K x x M K x x  

(c) Let K  be a field and E  be a no-exit 

graph has form Figure 2. From Theorem 4.6, 
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we have 1

2( ( )) ( ( [ , ]))KJ L E M J K x x  and 
1

2( ( )) ( ( [ , ])).s K sJ L E M J K x x  

Corollary 4.8. Let K be a any field, E  a 

finite no-cycle graph and 1{ ,..., }kv v  the set of 

sinks. Then  

( ( )) ( ( )) 0. K s KJ L E J L E
 

Proof. It immediately follows from 

Theorem 4.6.                                                    □                                                             

Remark 4.9. We can use Theorem 3.3 to 

proof Corollary 4.8. Especially, from Theorem 

3.3 we have 

1
( ) ( ),


 

i

t

K n
i

L E M K
 

where 1{ ,..., }tw w  the set of sinks for each 

1 , i t  
in  is the number of path ending in the 

sink iw  (this includes iw  itself, as a path of 

length 0).  

Fom Theorem 2.4, we have 

1
( ( )) ( ( )),


 

i

t

K n
i

J L E J M K
1

( ( )) ( ( )).


 
i

t

s K s n
i

J L E J M K  

Fom Theorem 2.3, we have 

1
( ( )) ( ( )),


 

i

t

K n
i

J L E M J K
1

( ( )) ( ( )).


 
i

t

s K n s
i

J L E M J K  

From Corollary 2.2, ( ) ( ) 0. sJ K J K  We 

have ( ( )) ( ( )) 0. K s KJ L E J L E  

Example 4.10. (a) Let K  be a field and 

E  a graph has form Figure 5 or Figure 6. 

Since Figure 5 or Figure 6 graphs is acyclic, 

follow Corollary 4.8 ( ( )) ( ( )) 0. K s KJ L E J L E  

This is also the result in Corollary 4.5 (c). 

 (b) Let K  be is a field and E  a acyclic 

graph has form in Example 3.4. From 

Corollary 4.8, 

( ( )) ( ( )) 0. K s KJ L E J L E  

5. Conclusion 

We have calculated the J radical and 

the 
s
J radical for the Leavitt path algebras 

( )RL E
 with coefficients in a commutative 

semiring R  of some finite graphs E

(Proposition 4.1, Proposition 4.2, Proposition 

4.3, Proposition 4.4). In particular, we have 

also calculated the J radical and the 
s
J

radical for the Leavitt path algebras ( )KL E
 

with coefficients in a field K of acyclic graphs 

(Corollary 4.8), no-exit graphs (Theorem 4.6) 

and applicable examples (Example 4.7 and 

Example 4.10). 

In the future, we will expand two 

structural theorems (Theorem 3.3 and Theorem 

3.5) of the Leavitt path algebras over 

commutative semirings of acyclic graphs and 

no-exit graphs.  
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