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Abstract

The receptor-binding domain of the SARS-CoV-2 spike protein is the primary target
for neutralizing antibodies, yet its continuous evolution demands efficient computational
strategies for antibody screening. This study screened 288 antibodies from the CoV-AbDab
database using a combined workflow of HDOCK docking and PRODIGY affinity prediction,
identifying five top-ranked candidates: P442, C14-B3, COVOX-150, CC12.1, and 3G10. To
further examine binding robustness, steered molecular dynamics (SMD) simulations were
conducted for these five complexes, where non-equilibrium work (Wyuy) and maximum
pulling force (Fua) were obtained as mechanical stability indicators. Among the candidates,
P4A2 exhibited the highest mechanical resistance to unbinding, consistent with its most
favorable PRODIGY binding energy. Strong correlations were observed between SMD
metrics and PRODIGY results (R = -0.95 for Wy and -0.93 for Fua), highlighting the
consistency of affinity ranking across independent computational methods. Together, these
findings validate a cost-effective computational pipeline for prioritizing antibody candidates
and identify P4A42, CIA-B3, and CCI2.1 as promising leads for further experimental
evaluation via ELISA, SPR, and extended molecular dynamics simulations.
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Tém tit

Viing lién két thu l}’zé? cua protein gai SARS-CoV-2 la thu lhé chinh cua cac khang thé:
trung hoa; tuy nhién, sy tién hoa lién tuc cua virus doi hoi cdc chién ]u’ac sang loc khang the
hiéu qua dua trén tinh toan. Trong nghién cuu nay, 288 khang thé ti co so dit licu CoV-
AbDab di dwoc sang loc bang quy trinh ket hop giita docking HDOCK va dy dodn di luc
PRODIGY, qua dé xdc dinh 05 img vién tiém ndang nhdt gom: P442, C14-B3, COVOX-150,
CCI2.1 va 3G10. Bé danh gid giita cdc phwong phdp, mé phéng déng luc hoc kéo dinh
hudng phan ti da duwoc thuc hién cho 05 phirc hop ndy, tir do thu dugc cong khong can bang
(Wpun) va luc kéo ciye dai (Fiay) nhu cac chi so dac trung cho do on dinh co hoc cia phirc
hop. Trong sé cdc g vién, P4A2 thé hién khd nang lién két manh nhdt, phii hop voi nang
leong lién két thudn loi nhat do PRODIGY du doan. Su tuwong quan giita Iget qua SMD va
nang luong PRODIGY (R = -0.95 doi voi Wy va -0.93 doi voi Fuay) cho thdy sw thong nhat
gitta cac phiong phap tinh toan doc ldp. Keét qua ndy khang dinh tinh hiéu qua cua quy trinh
sang loc in silico va xdc dinh P442, C14-B3 va CCI12.1 la nhiing imng vién trién vong cho
cac budc xdc thuc thuc nghiém bang ELISA, SPR va mé phong dong luc hoc phan tir ¢
thang thoi gian dai hon.

Twr khéa: HDOCK, monoclonal antibody, PRODIGY, protein-protein docking, RBD,
SARS-CoV-2, SMD.

47


mailto:nqthai@dthu.edu.vn

Dong Thap University Journal of Science, Vol. 14, No. 02§ (2025): 46 - 57

1. Introduction

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has emerged as one of
the greatest global health challenges of the 21 century, prompting an urgent global demand
for effective therapeutic and preventive strategies (Lai et al., 2020). Despite the widespread
deployment of vaccines and the implementation of measures such as social distancing and
mask-wearing, effective treatments for severe cases remain a pressing need. According to the
Ministry of Health, as of 25" May, 2025, more than 777 million cases and over 7 million
deaths have been recorded worldwide, while Vietnam has reported 641 sporadic cases across
39 provinces and cities since early 2025. In this context, antibody-based therapies-
particularly monoclonal antibodies (mAbs)-have gained attention as a promising treatment
approach (Taylor et al., 2021). These mAbs play a critical role not only in treating infections
but also in protecting individuals with poor immune responses to vaccines and countering
immune-evasive viral variants (Cowan et al., 2023). This strategy targets the Receptor
Binding Domain (RBD) of the SARS-CoV-2 spike protein, which mediates viral entry
through interaction with the human ACE2 receptor (Lan et al., 2020). Blocking this
interaction is considered a promising strategy to neutralizing the virus and preventing
infection (Iyer et al., 2020; Premkumar et al., 2020).

Monoclonal antibodies (mAbs) have emerged as powerful tools in both therapeutic and
diagnostic applications for viral diseases, including COVID-19, due to their ability to
specifically bind to viral proteins-such as the receptor-binding domain (RBD) of the SARS-
CoV-2 spike protein and inhibit viral entry (Wang et al., 2020). In the context of SARS-CoV-
2, numerous antibodies targeting the spike RBD have been developed with varying degrees of
neutralization potency and binding affinity. To support the development and analysis of such
antibodies, several specialized databases have been established to provide comprehensive
information on antibody sequences, three-dimensional (3D) structures, and their interaction
properties. Key resources include the Observed Antibody Space (OAS), which hosts over one
billion human and animal antibody sequences but lacks structural data (Olsen et al., 2022);
IMGT/3D structure-DB, which offers standardized 3D structural data for complementarity-
determining regions (CDRs) with limited utility for large-scale computational analysis (Kaas et
al., 2004); and the Therapeutic Structural Antibody Database (Thera-SAbDab), a clinically
oriented subset of SAbDab that compiles antibodies under development or in trials, though its
data extraction capabilities remain somewhat constrained (Raybould et al., 2021). These
databases play a crucial role in facilitating antibody discovery, optimization, and therapeutic
evaluation against evolving viral threats.

In this context, computational docking methods offer an efficient strategy to pre-
screen a large number of antibodies for their potential to bind strongly to the target RBD,
significantly reducing experimental workload and cost. These docking algorithms simulate
antibody-protein interactions based on structural data, enabling in silico estimation of
binding orientation and energy. HDOCK (Yan et al., 2017) combines template-based and ab
initio strategies. It automatically detects homologous complexes and applies template
information when possible, while retaining the ability to perform global docking when no
templates exist. HDOCK also employs a physics-based scoring function optimized for
protein-protein interactions, and supports fully automated, large-scale docking without
requiring prior definition of binding sites or constraints. However, currently available
monoclonal antibodies face several limitations. Many have shown reduced neutralization
potency against emerging SARS-CoV-2 variants due to mutations within the RBD, leading
to potential immune escape (Cowan et al., 2023). Additionally, the high cost and complexity
of large-scale mAb production pose challenges for accessibility in low- and middle-income
countries like Vietnam. These challenges highlight the urgent need to discover novel
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antibodies with improved binding characteristics and broader variant coverage through cost-
effective computational approaches.

This study employed the HDOCK (Yan et al.,, 2017), a hybrid docking platform
integrating template-based and ab initio strategies for protein-protein interaction prediction, to
screen 288 antibodies against the RBD of SARS-CoV-2. Compared to other docking tools like
HADDOCK, HDOCK offers enhanced efficiency for large-scale screening due to its
automated template detection and optimized scoring function. The binding poses and docking
score obtained from HDOCK were subsequently re-evaluated using the PRODIGY web server
(Xue et al., 2016), which predicts the binding free energy (AG) and dissociation constant (Kg)
of protein-protein complexes based on structural features. The goal of this study is to identify
potential antibody candidates with strong binding affinity to the RBD of SARS-CoV-2,
complementing existing therapies like bamlanivimab, etesevimab and REGN-COV2, as
indicated by favorable docking scores, low predicted binding free energies, and dissociation
constants in the picomolar to nanomolar range. These results provide a foundation for selecting
promising antibodies for further investigation through molecular dynamics simulations and in
vitro binding assays. In the context of Vietnam, where sporadic COVID-19 cases persist, this
study supports the development of affordable antibody-based therapies tailored to local
healthcare needs.

2. Materials and methods
2.1. Antibody dataset and target structure

A total of 288 antibody structures were collected from the coronavirus antibody
database (CoV-AbDab. The filtering criteria for antibodies in this study are as follows: Type:
antibody, Binds to: SARS-CoV-2, Does not bind to: All, Neutralizing against: All, Not
neutralizing against: All, Protein/Epitope: Spike protein - RBD, Origin: All, Heavy V gene:
All, Heavy J gene: All, Light V gene: All, Light J gene: All. The receptor binding domain
(RBD) of the SARS-CoV-2 spike glycoprotein was extracted from the high-resolution
crystallographic structure (PDB ID: 8DLK). The RBD region encompassing residues 401-
421 and 442-501 was selected as the target binding site. These two non-contiguous segments
correspond to key contact zones between RBD and the human ACE2 receptor, which form
the functional core of the receptor-binding interface, as shown in structural studies (Lan et
al., 2020). It showed in Figure 1.

Figure 1. The 3D structure of PDB ID: SDLK and the Receptor Binding Domain
(RBD) of the SARS-CoV-2 spike glycoprotein
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All structures were cleaned to remove water molecules, ligands, and ions, and were
prepared for docking using standard preprocessing procedures, including chain selection and
hydrogen addition, which were preprocessed using the PyMOL Molecular Graphics System,
Version 1.8 (Schrodinger, LLC, 2015) for version of education.

2.2. Protein-Protein docking using HDOCK

Docking simulations were performed using the HDOCK V1.0 downloaded and
installed on a local computer system (http://hdock.phys.hust.edu.cn/), which integrates
template-based modeling and free docking for predicting protein-protein interactions. Each
antibody was docked individually to the RBD’s ACE2-interacting interface (residues 401-
421 and 442-501). HDOCK V1.0 settings and parameters were used: Input format: PDB files
for both antibody and RBD, search strategy: box binding site for RBD, output: Only the top-
ranked model per antibody was selected based on HDOCK's scoring function, which
optimizes for protein-protein interaction energy.

2.3. Binding affinity estimation using PRODIGY

To obtain a more reliable prediction of the binding free energy and binding affinity, each
docked complex was submitted to the PRODIGY software
(https://bianca.science.uu.nl/prodigy/) for estimation of binding free energy (AG) and
dissociation constant (Kd). The analyses were performed using standard desktop systems
running Ubuntu 22.04. The system uses structural features of the interface to estimate: Binding
free energy (AG, kcal/mol), dissociation constant (Kd, M) at 300 K. Only the top-ranked
binding mode from HDOCK was evaluated in PRODIGY for each antibody. This two-step
approach (HDOCK followed by PRODIGY) allows for both spatial modeling and
thermodynamic estimation of protein-protein interactions.

2.4. Steered molecular dynamics (SMD)

Steered molecular dynamics (SMD) (Li et al., 2012) simulations were performed for
the five top-ranked antibody-RBD complexes to probe the unbinding process. In the SMD
setup, the antibody was connected to a virtual (dummy) atom through a harmonic spring with
spring constant k, while the dummy atom was pulled at a constant velocity v along the x-
direction. The pulling force was computed as:

F = k (Ax — vt)
with k = 600 kJ/(mol.nm?), v = 5 nm/ns.

The non-equilibrium work, Wpui, was used as the primary scoring function to rank the
binding strengths of the complexes, as it provides a more reliable measure for SMD-based
unbinding analysis [A new method]. The work was calculated as:

Xmax

> — Nstep (F 1 -|- F)
Wpun = f F.dx = Zl %(le + x;)
0

where Ny, 1s the total number of steps used in simulation. For each antibody—RBD
complex, five independent SMD replicates were performed under identical simulation
conditions. The reported values of Wy and Frmax represent the average from these five
replicates, ensuring statistical reliability and reducing the influence of stochastic fluctuations
inherent to SMD.
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3. Results and discussion
3.1. Docking results

The docking simulations using the HDOCK V1.0 yielded predicted interaction
energies (E_HD) for 288 antibodies against the SARS-CoV-2 RBD. The docking scores
ranged from -232.7 to -441.2, indicating a broad spectrum of binding propensities across the
antibody set. Lower (more negative) docking scores values suggest stronger predicted
interactions.

Among 288 docking configurations between the receptor-binding domain (RBD) of
SARS-CoV-2 (extracted from PDB ID: 8DLK) and antibodies obtained from the antibody
database, the docking scores (E_HD) ranged from -232.7 to -441.2. Thereby, 05 complexes
with the lowest docking scores and dissociation constants (Kd) were selected for detailed
analysis, which presented in Table 1. The ranking and positions of these complexes among
the 288 configurations are as follows.

Table 1. HDOCK docking scores values, dissociation constant Kd, and PRODIGY-
predicted energy of RBD-Ab complexes

Complex (RBD-Ab) E_HD Rank Kd (M) kP
X -
P — (out of 288) (keal/mol)
RBD - P4A2 (TWVL)  -311.6 67 8.20 x 1015 192
RBD - C1A-B3 (TKFW)  -348.8 26 4.80 x 10714 1182
RBD - COVOX-150 (7BEI)  -347.1 27 9.20 x 10" 178
RBD-CCI2.1 (6XC2)  -329.6 36 4.90 x 1071 [18.1
RBD - 3G10 (8HN6) 357.1 20 120 x 10773 17.6

Detailed analysis of hydrogen bonds and non-covalent (nonbonded) contacts indicates
that the stability and high affinity between the RBD and antibodies mainly depend on
specific residues within the receptor-binding motif (RBM) of the RBD, as well as the
complementarity determining regions (CDRs) of the antibodies.

Key RBD residues: Positions such as Tyrd73, Leud55, Alad75, Asnd87, Glu484,
Tyr501, and Tyr505 consistently participate in forming hydrogen bonds and nonbonded
contacts with multiple residues in the antibody CDR regions. These residues act as “hotspots”,
playing a crucial role in forming a stable interaction network and enabling specific antibody
recognition.

Hydrogen bonds: Hydrogen bonds are formed via polar and charged groups of RBD
residues (Ser, Asn, Gln, Tyr, Glu) interacting with residues primarily including Tyr, Ser,
Arg, and Asp on the antibodies. These bonds enhance specificity and stabilize the complex.
For example, the RBD - P4A2 complex exhibits 10 prominent hydrogen bonds such as
Tyrd89-Thr206, Tyr501-Asn165, Lys417-Asp147. Meanwhile, RBD - C1A-B3 and RBD -
CCl12.1 establish between 14 to 16 hydrogen bonds, reflecting a dense network of
interactions, especially at RBM residues.

Nonbonded contacts: Beyond hydrogen bonds, hydrophobic interactions and van der
Waals contacts involving nonpolar residues such as Phe456, Phe486, Val503, and Gly416
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also significantly contribute to strengthening the surface interactions between RBD and
antibodies. The combination of hydrogen bonding and nonbonded contacts creates a binding
environment that is both specific and stable.

Lys4l17(Z) Asnd87(Z)

Asnd60(Z) Tyr473(2) Ala475(2)
Aspd20(Z) GIy416(Z)  Thr415(Z) /{LyHDS(Z) A%MH(Z) ﬂ Phe486(Z)
298 3
/ A \ /7‘ 7/ A 15 2,62 T 2 :ls 7}\ _"l@.i
Gly54(H) Tyrl02(H)
Sers3(H)  Ser3l(H)  Asn32(H)

Asp96(H) Tyr33(H)
ThrS6(H) A

251
Tyr453(Z) Glud84(Z) Tyr501(Z) Tyrs05(Z)
Leu455(Z)
Gly502(Z)
Tyra2l(z) — Tyr489(2) GIn493(Z) T
231 % }‘m
> \102/ i N 7 )ﬂg/ / »L \“ \Am

Tyr100(H) 4 Gly28(L) 4 Ie2(L) Asn92(L) Gln27(L

Ty32(L)  Gly99(H) Tyrl00B(H) Argl00(H) Ser30(L) Ser93(L)

Ser9S(H) Tyr38(H)

Tyr52(H)

Figure 2. The hydrogen bonding network (dashed blue line), nonbonded contacts
(NBCs) (dashed red line) of complex RBD-C1A-B3

Significance of docking scores Rankings: Although the RBD-3G10 complex has the
lowest docking scores (-357.1) and ranks 20th among the 288 configurations, its Kd value is
higher compared to other complexes. This suggests that overall stability beyond hydrogen
bonding might depend on hydrophobic interactions and molecular packing. Conversely, the
RBD-P4A2 (7WVL) complex, despite having a higher docking scores (-311.6) and ranking
67th, shows the lowest Kd (8.2 x 10"° M), reflecting an optimized hydrogen bond network
and highly specific interactions at the antibody recognition site. It showed in Figure 3.

Heavy chain

y Light chain
of antibody

of antibody

Figure 2. The RBD-C1A-B3 complex is visualized with the RBD domain shown in
magenta, the heavy chain of the C1A-B3 antibody in red, and the light chain in blue
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However, as HDOCK is a rigid-body docking platform and does not explicitly account
for solvation or entropy effects, these values should be interpreted with caution and
supplemented with thermodynamic analysis.

3.2. Predicted binding affinity from PRODIGY

PRODIGY was used to predict the binding free energy (AG) and dissociation constant
(Kd) of each antibody-RBD complex. The predicted AG (energy prodi) values varied
between approximately -7.6 to -19.2 kcal.mol”!, with corresponding Kd values (KD _prodi)
ranging from 10 pM to 10 uM.

Notably, a group of antibodies demonstrated predicted binding affinities in the low
nanomolar or even picomolar range, suggesting strong and potentially therapeutically
relevant interactions. These predictions help prioritize antibodies for further structural or
experimental validation.

3.3. Steered molecular dynamics results.

We additionally performed steered molecular dynamics (SMD) on the five prioritized
antibody-RBD complexes to probe unbinding. From these runs we extracted non-equilibrium
work and the maximum pulling force (Fmax) for each complex. The results are showed in
Table 2.

Table 2. The maximum pulling force (Fmax) and non-equilibrium work
for each complex.

Complex (RBD-Ab) Fanax (pN) Weu E_HD E_Pr
(kcal.mol™) (kcal.mol™)
RBD - P4A2 (TWVL)  |2665.1 +132.6| 1266.7+61.4 |  -311.6 192
RBD - C1A-B3 (TKFW) | 1848.8=64.0 | 627.5 +30.5 1348.8 1182
RBD - COVOX-150 (7BEI)| 1616.5+80.1 | 600.2 = 29.7 1347.1 17.8
RBD - CC12.1 (6XC2) | 2028.6%+71.0 | 639.3+21.8 1329.6 118.1
RBD - 3G10 (SHNG6) | 1804.4=53.7 | 565.6= 18.4 357.1 17.6

SMD provided additional insights into the mechanical stability of the top five
antibody-RBD complexes. Among them, P4A2 exhibited the highest maximum pulling force
(Fmax) and non-equilibrium work (Wpui), indicating the strongest resistance to unbinding,
consistent with its most favorable PRODIGY -predicted binding free energy. The remaining
antibodies showed intermediate mechanical stabilities, with C1A-B3 and CC12.1 forming a
moderately strong group, while COVOX-150 and 3G10 displayed lower Fmax and Wpu
values. These results highlight that while docking scores provide a useful initial filter, SMD
and PRODIGY better capture differences in binding robustness. The overall consistency
across methods supports the reliability of the computational pipeline and reinforces P4A2 as
the strongest candidate for subsequent validation using ELISA, SPR, and longer-timescale
MD simulations.

3.4. Correlation analysis

A strong negative correlation (R = -0.9) was observed between HDOCK docking
scores (E_HD) and PRODIGY -predicted binding free energy (E_Pr), indicating that lower
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docking scores correspond to more favorable binding energies or wild-type SARS-CoV-2
complexes (Figure 4). Similarly, a correlation of R = -0.9 was found between E_HD and the
natural logarithm of the dissociation constant (In(Kd)), suggesting that antibodies with
stronger predicted interactions (lower E_HD) exhibit higher binding affinities (lower Kd).
These findings align with previous studies validating HDOCK and PRODIGY against
experimental binding data (Xue et al., 2016; Yan et al., 2017), which confirms the reliability
of our computational approach. However, as HDOCK employs rigid docking, it may
overlook conformational flexibility and solvation effects, potentially affecting prediction
accuracy. Future studies should incorporate molecular dynamics simulations to account for
these factors and further validate the prioritized antibodies.

A full correlation analysis across all 288 docking models was not included in the
present study because PRODIGY requires high-quality and physically realistic interface
geometries, whereas a portion of the large-scale docking outputs did not meet the required
structural criteria for reliable affinity prediction. Interface refinement and full-panel
correlation analysis will be conducted in a follow-up study to provide a more comprehensive
statistical assessment.
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Figure 3. Correlation plots of HDOCK docking scores (E_HD)
with (A) PRODIGY-predicted binding free energy (E_Pr, kcal/mol) (left).
Natural logarithm of dissociation constant (In(Kd)) (right) for RBD-AB complexes

In addition to the correlation between HDOCK docking scores and PRODIGY -
predicted binding free energies, we also examined the relationships between the SMD-
derived unbinding metrics and PRODIGY. A strong negative correlation was observed
between the non-equilibrium work and the predicted binding energy with R = -0.95,
indicating that complexes requiring higher mechanical work to dissociate also possess more
favorable PRODIGY affinities. Similarly, the maximum pulling force showed a strong
negative correlation with PRODIGY (R = -0.93), supporting the interpretation that
mechanically robust complexes tend to exhibit stronger predicted binding (Figure 5).
Although these correlations were calculated from the top five prioritized antibody-RBD
complexes, the high magnitude of the correlation coefficients demonstrates a consistent trend
across docking, SMD, and PRODIGY scoring. These results further reinforce the reliability
of the computational workflow and affirm that P4A2, C1A-B3, and CC12.1 possess both
strong mechanical resistance to unbinding and favorable predicted binding energetics.

Future work will include epitope mapping of the top-ranked antibodies and
comparison with clinically approved antibodies as well as mutation hotspots across SARS-
CoV-2 Variants of Concern, in order to evaluate the resilience of these candidates against
viral evolution.
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It should be noted that the correlations derived from the top five antibody-RBD
complexes represent internal consistency within the prioritized subset rather than population-
wide statistical behavior. These correlations therefore serve as a validation step for selecting
high-confidence candidates, while future work will extend the analysis to the entire 288§-
complex dataset to assess global trends.
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Figure 5. Correlation plots of PRODIGY-predicted binding free energy and non-
equilibrium work (left), and Fpay (right).

4. Conclusion

Although the present study focuses on known antibodies from CoV-AbDab, the
novelty of this work lies in establishing a consistent and validated computational pipeline
that integrates docking, affinity prediction, and SMD-based unbinding analysis, which can
be applied to larger and more diverse antibody repertoires in future studies. Despite focusing
on antibodies structurally characterized previously, the scientific contribution of this work
lies in developing and validating a unified, reproducible, and computationally efficient
screening pipeline. This workflow establishes the methodological foundation required for
future large-scale screening of novel, engineered, or computationally generated antibody
repertoires, thereby extending far beyond the scope of existing datasets. This study presents a
reproducible and integrated computational workflow for screening antibody-RBD
interactions, combining HDOCK docking, PRODIGY affinity estimation, and SMD-based
mechanical stability analysis. From an initial set of 288 antibodies, five top-performing
candidates were identified, with P4A2 emerging as the strongest binder based on docking
scores, PRODIGY predictions, and SMD-derived Wpu and Fmax values. The strong
correlations between SMD metrics and PRODIGY binding energies further demonstrate the
internal consistency and reliability of the screening approach. While the current analysis
focuses on known SARS-CoV-2 antibodies from CoV-AbDab, the workflow establishes a
solid foundation for larger-scale antibody discovery and refinement. Future work will
expand correlation analysis to the full dataset, incorporate equilibrium molecular dynamics
to capture structural flexibility, and validate computational predictions experimentally
through ELISA and SPR assays. Overall, the results provide a robust basis for guiding
experimental antibody development in a rapid and cost-effective manner.
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