
Dong Thap University Journal of Science, Vol. 14, No. 02S (2025): 46 - 57 

46 

 

 

DOI: https://doi.org/10.52714/dthu.14.02S.2025.1716  

IN SILICO SCREENING OF SARS-CoV-2 RBD-TARGETING 

ANTIBODIES USING HDOCK AND PRODIGY 

Kieu Nhat Ha1, Kieu Minh Nhan2, Bui Van Thang3,  

Le Thi Ngoc Tu4, and Nguyen Quoc Thai4* 

1Master's student, Dong Thap University, Vietnam 
2Office of Facilities and Project Management, Dong Thap University, Vietnam 

3Office of Academic Affairs, Dong Thap University, Vietnam 
4Faculty of Natural Sciences Teacher Education, School of Education,  

Dong Thap University, Cao Lanh 870000, Vietnam 

*Corresponding author, Email: nqthai@dthu.edu.vn 

Article history 

Received: 11/7/2025; Received in revised form: 19/11/2025; Accepted: 14/12/2025 

Abstract 

The receptor-binding domain of the SARS-CoV-2 spike protein is the primary target 

for neutralizing antibodies, yet its continuous evolution demands efficient computational 

strategies for antibody screening. This study screened 288 antibodies from the CoV-AbDab 

database using a combined workflow of HDOCK docking and PRODIGY affinity prediction, 

identifying five top-ranked candidates: P4A2, C1A-B3, COVOX-150, CC12.1, and 3G10. To 

further examine binding robustness, steered molecular dynamics (SMD) simulations were 

conducted for these five complexes, where non-equilibrium work (Wpull) and maximum 

pulling force (Fmax) were obtained as mechanical stability indicators. Among the candidates, 

P4A2 exhibited the highest mechanical resistance to unbinding, consistent with its most 

favorable PRODIGY binding energy. Strong correlations were observed between SMD 

metrics and PRODIGY results (R = -0.95 for Wpull and -0.93 for Fmax), highlighting the 

consistency of affinity ranking across independent computational methods. Together, these 

findings validate a cost-effective computational pipeline for prioritizing antibody candidates 

and identify P4A2, C1A-B3, and CC12.1 as promising leads for further experimental 

evaluation via ELISA, SPR, and extended molecular dynamics simulations. 
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Tóm tắt 

 Vùng liên kết thụ thể của protein gai SARS-CoV-2 là thụ thể chính của các kháng thể 

trung hòa; tuy nhiên, sự tiến hóa liên tục của virus đòi hỏi các chiến lược sàng lọc kháng thể 

hiệu quả dựa trên tính toán. Trong nghiên cứu này, 288 kháng thể từ cơ sở dữ liệu CoV-

AbDab đã được sàng lọc bằng quy trình kết hợp giữa docking HDOCK và dự đoán ái lực 

PRODIGY, qua đó xác định 05 ứng viên tiềm năng nhất gồm: P4A2, C1A-B3, COVOX-150, 

CC12.1 và 3G10. Để đánh giá giữa các phương pháp, mô phỏng động lực học kéo định 

hướng phân tử đã được thực hiện cho 05 phức hợp này, từ đó thu được công không cân bằng 

(Wpull) và lực kéo cực đại (Fmax) như các chỉ số đặc trưng cho độ ổn định cơ học của phức 

hợp. Trong số các ứng viên, P4A2 thể hiện khả năng liên kết mạnh nhất, phù hợp với năng 

lượng liên kết thuận lợi nhất do PRODIGY dự đoán. Sự tương quan giữa kết quả SMD và 

năng lượng PRODIGY (R = -0.95 đối với Wpull và -0.93 đối với Fmax) cho thấy sự thống nhất 

giữa các phương pháp tính toán độc lập. Kết quả này khẳng định tính hiệu quả của quy trình 

sàng lọc in silico và xác định P4A2, C1A-B3 và CC12.1 là những ứng viên triển vọng cho 

các bước xác thực thực nghiệm bằng ELISA, SPR và mô phỏng động lực học phân tử ở 

thang thời gian dài hơn. 

Từ khóa:  HDOCK, monoclonal antibody, PRODIGY, protein-protein docking, RBD, 

SARS-CoV-2, SMD. 
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1. Introduction 

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has emerged as one of 

the greatest global health challenges of the 21st century, prompting an urgent global demand 

for effective therapeutic and preventive strategies (Lai et al., 2020). Despite the widespread 

deployment of vaccines and the implementation of measures such as social distancing and 

mask-wearing, effective treatments for severe cases remain a pressing need. According to the 

Ministry of Health, as of 25th May, 2025, more than 777 million cases and over 7 million 

deaths have been recorded worldwide, while Vietnam has reported 641 sporadic cases across 

39 provinces and cities since early 2025. In this context, antibody-based therapies-

particularly monoclonal antibodies (mAbs)-have gained attention as a promising treatment 

approach (Taylor et al., 2021). These mAbs play a critical role not only in treating infections 

but also in protecting individuals with poor immune responses to vaccines and countering 

immune-evasive viral variants (Cowan et al., 2023). This strategy targets the Receptor 

Binding Domain (RBD) of the SARS-CoV-2 spike protein, which mediates viral entry 

through interaction with the human ACE2 receptor (Lan et al., 2020). Blocking this 

interaction is considered a promising strategy to neutralizing the virus and preventing 

infection (Iyer et al., 2020; Premkumar et al., 2020). 

Monoclonal antibodies (mAbs) have emerged as powerful tools in both therapeutic and 

diagnostic applications for viral diseases, including COVID-19, due to their ability to 

specifically bind to viral proteins-such as the receptor-binding domain (RBD) of the SARS-

CoV-2 spike protein and inhibit viral entry (Wang et al., 2020). In the context of SARS-CoV-

2, numerous antibodies targeting the spike RBD have been developed with varying degrees of 

neutralization potency and binding affinity. To support the development and analysis of such 

antibodies, several specialized databases have been established to provide comprehensive 

information on antibody sequences, three-dimensional (3D) structures, and their interaction 

properties. Key resources include the Observed Antibody Space (OAS), which hosts over one 

billion human and animal antibody sequences but lacks structural data (Olsen et al., 2022); 

IMGT/3D structure-DB, which offers standardized 3D structural data for complementarity-

determining regions (CDRs) with limited utility for large-scale computational analysis (Kaas et 

al., 2004); and the Therapeutic Structural Antibody Database (Thera-SAbDab), a clinically 

oriented subset of SAbDab that compiles antibodies under development or in trials, though its 

data extraction capabilities remain somewhat constrained (Raybould et al., 2021). These 

databases play a crucial role in facilitating antibody discovery, optimization, and therapeutic 

evaluation against evolving viral threats. 

In this context, computational docking methods offer an efficient strategy to pre-

screen a large number of antibodies for their potential to bind strongly to the target RBD, 

significantly reducing experimental workload and cost. These docking algorithms simulate 

antibody-protein interactions based on structural data, enabling in silico estimation of 

binding orientation and energy. HDOCK (Yan et al., 2017) combines template-based and ab 

initio strategies. It automatically detects homologous complexes and applies template 

information when possible, while retaining the ability to perform global docking when no 

templates exist. HDOCK also employs a physics-based scoring function optimized for 

protein-protein interactions, and supports fully automated, large-scale docking without 

requiring prior definition of binding sites or constraints. However, currently available 

monoclonal antibodies face several limitations. Many have shown reduced neutralization 

potency against emerging SARS-CoV-2 variants due to mutations within the RBD, leading 

to potential immune escape (Cowan et al., 2023). Additionally, the high cost and complexity 

of large-scale mAb production pose challenges for accessibility in low- and middle-income 

countries like Vietnam. These challenges highlight the urgent need to discover novel 



Dong Thap University Journal of Science, Vol. 14, No. 02S (2025): 46 - 57 

49 

 

antibodies with improved binding characteristics and broader variant coverage through cost-

effective computational approaches. 

This study employed the HDOCK (Yan et al., 2017), a hybrid docking platform 

integrating template-based and ab initio strategies for protein-protein interaction prediction, to 

screen 288 antibodies against the RBD of SARS-CoV-2. Compared to other docking tools like 

HADDOCK, HDOCK offers enhanced efficiency for large-scale screening due to its 

automated template detection and optimized scoring function. The binding poses and docking 

score obtained from HDOCK were subsequently re-evaluated using the PRODIGY web server 

(Xue et al., 2016), which predicts the binding free energy (ΔG) and dissociation constant (Kd) 

of protein-protein complexes based on structural features. The goal of this study is to identify 

potential antibody candidates with strong binding affinity to the RBD of SARS-CoV-2, 

complementing existing therapies like bamlanivimab, etesevimab and REGN-COV2, as 

indicated by favorable docking scores, low predicted binding free energies, and dissociation 

constants in the picomolar to nanomolar range. These results provide a foundation for selecting 

promising antibodies for further investigation through molecular dynamics simulations and in 

vitro binding assays. In the context of Vietnam, where sporadic COVID-19 cases persist, this 

study supports the development of affordable antibody-based therapies tailored to local 

healthcare needs. 

2. Materials and methods 

2.1. Antibody dataset and target structure 

A total of 288 antibody structures were collected from the coronavirus antibody 

database (CoV-AbDab. The filtering criteria for antibodies in this study are as follows: Type: 

antibody, Binds to: SARS-CoV-2, Does not bind to: All, Neutralizing against: All, Not 

neutralizing against: All, Protein/Epitope: Spike protein - RBD, Origin: All, Heavy V gene: 

All, Heavy J gene: All, Light V gene: All, Light J gene: All. The receptor binding domain 

(RBD) of the SARS-CoV-2 spike glycoprotein was extracted from the high-resolution 

crystallographic structure (PDB ID: 8DLK). The RBD region encompassing residues 401-

421 and 442-501 was selected as the target binding site. These two non-contiguous segments 

correspond to key contact zones between RBD and the human ACE2 receptor, which form 

the functional core of the receptor-binding interface, as shown in structural studies (Lan et 

al., 2020). It showed in Figure 1. 

 

Figure 1. The 3D structure of  PDB ID: 8DLK  and the Receptor Binding Domain 

(RBD) of the SARS-CoV-2 spike glycoprotein 
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All structures were cleaned to remove water molecules, ligands, and ions, and were 

prepared for docking using standard preprocessing procedures, including chain selection and 

hydrogen addition, which were preprocessed using the PyMOL Molecular Graphics System, 

Version 1.8 (Schrödinger, LLC, 2015) for version of education. 

2.2. Protein-Protein docking using HDOCK 

Docking simulations were performed using the HDOCK V1.0 downloaded and 

installed on a local computer system (http://hdock.phys.hust.edu.cn/), which integrates 

template-based modeling and free docking for predicting protein-protein interactions. Each 

antibody was docked individually to the RBD’s ACE2-interacting interface (residues 401-

421 and 442-501). HDOCK V1.0 settings and parameters were used: Input format: PDB files 

for both antibody and RBD, search strategy: box binding site for RBD, output: Only the top-

ranked model per antibody was selected based on HDOCK's scoring function, which 

optimizes for protein-protein interaction energy.   

2.3. Binding affinity estimation using PRODIGY 

To obtain a more reliable prediction of the binding free energy and binding affinity, each 

docked complex was submitted to the PRODIGY software 

(https://bianca.science.uu.nl/prodigy/) for estimation of binding free energy (ΔG) and 

dissociation constant (Kd). The analyses were performed using standard desktop systems 

running Ubuntu 22.04. The system uses structural features of the interface to estimate: Binding 

free energy (ΔG, kcal/mol), dissociation constant (Kd, M) at 300 K. Only the top-ranked 

binding mode from HDOCK was evaluated in PRODIGY for each antibody. This two-step 

approach (HDOCK followed by PRODIGY) allows for both spatial modeling and 

thermodynamic estimation of protein-protein interactions. 

2.4. Steered molecular dynamics (SMD) 

Steered molecular dynamics (SMD) (Li et al., 2012)  simulations were performed for 

the five top-ranked antibody-RBD complexes to probe the unbinding process. In the SMD 

setup, the antibody was connected to a virtual (dummy) atom through a harmonic spring with 

spring constant 𝑘, while the dummy atom was pulled at a constant velocity 𝑣 along the 𝑥-

direction. The pulling force was computed as:  

𝐹 =  𝑘 (𝑥 −  𝑣𝑡) 

with 𝑘  =  600 kJ/(mol.nm2), 𝑣 =  5 nm/ns. 

The non-equilibrium work, Wpull, was used as the primary scoring function to rank the 

binding strengths of the complexes, as it provides a more reliable measure for SMD-based 

unbinding analysis [A new method]. The work was calculated as: 

𝑊𝑝𝑢𝑙𝑙 =  ∫ 𝐹⃗. 𝑑𝑥⃗⃗⃗⃗⃗

𝑥𝑚𝑎𝑥

0

=  ∑
(𝐹𝑖+1 +  𝐹𝑖)

2

𝑁𝑠𝑡𝑒𝑝

1
(𝑥𝑖+1 + 𝑥𝑖) 

where Nstep is the total number of steps used in simulation. For each antibody–RBD 

complex, five independent SMD replicates were performed under identical simulation 

conditions. The reported values of  Wpull and Fmax represent the average from these five 

replicates, ensuring statistical reliability and reducing the influence of stochastic fluctuations 

inherent to SMD. 
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3. Results and discussion 

3.1. Docking results 

The docking simulations using the HDOCK V1.0 yielded predicted interaction 

energies (E_HD) for 288 antibodies against the SARS-CoV-2 RBD. The docking scores 

ranged from -232.7 to -441.2, indicating a broad spectrum of binding propensities across the 

antibody set. Lower (more negative) docking scores values suggest stronger predicted 

interactions. 

Among 288 docking configurations between the receptor-binding domain (RBD) of 

SARS-CoV-2 (extracted from PDB ID: 8DLK) and antibodies obtained from the antibody 

database, the docking scores (E_HD) ranged from -232.7 to -441.2. Thereby, 05 complexes 

with the lowest docking scores and dissociation constants (Kd) were selected for detailed 

analysis, which presented in Table 1. The ranking and positions of these complexes among 

the 288 configurations are as follows. 

Table 1. HDOCK docking scores values, dissociation constant Kd, and PRODIGY-

predicted energy of RBD-Ab complexes 

Complex (RBD-Ab) E_HD 
Rank  

(out of 288) 
Kd (M) 

E_Pr 

(kcal/mol) 

RBD - P4A2 (7WVL) -311.6 67 8.20 x 10-15 -19.2  

RBD - C1A-B3 (7KFW) -348.8 26 4.80 x 10-14 -18.2  

RBD - COVOX-150 (7BEI) -347.1 27 9.20 x 10-14 -17.8  

RBD - CC12.1 (6XC2) -329.6 36 4.90 x 10-14 -18.1  

RBD - 3G10 (8HN6) -357.1 20 1.20 x 10-13 -17.6 

Detailed analysis of hydrogen bonds and non-covalent (nonbonded) contacts indicates 

that the stability and high affinity between the RBD and antibodies mainly depend on 

specific residues within the receptor-binding motif (RBM) of the RBD, as well as the 

complementarity determining regions (CDRs) of the antibodies. 

Key RBD residues: Positions such as Tyr473, Leu455, Ala475, Asn487, Glu484, 

Tyr501, and Tyr505 consistently participate in forming hydrogen bonds and nonbonded 

contacts with multiple residues in the antibody CDR regions. These residues act as “hotspots”, 

playing a crucial role in forming a stable interaction network and enabling specific antibody 

recognition. 

Hydrogen bonds: Hydrogen bonds are formed via polar and charged groups of RBD 

residues (Ser, Asn, Gln, Tyr, Glu) interacting with residues primarily including Tyr, Ser, 

Arg, and Asp on the antibodies. These bonds enhance specificity and stabilize the complex. 

For example, the RBD - P4A2 complex exhibits 10 prominent hydrogen bonds such as 

Tyr489-Thr206, Tyr501-Asn165, Lys417-Asp147. Meanwhile, RBD - C1A-B3 and RBD - 

CC12.1 establish between 14 to 16 hydrogen bonds, reflecting a dense network of 

interactions, especially at RBM residues. 

Nonbonded contacts: Beyond hydrogen bonds, hydrophobic interactions and van der 

Waals contacts involving nonpolar residues such as Phe456, Phe486, Val503, and Gly416 
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also significantly contribute to strengthening the surface interactions between RBD and 

antibodies. The combination of hydrogen bonding and nonbonded contacts creates a binding 

environment that is both specific and stable. 

 

Figure 2. The hydrogen bonding network (dashed blue line), nonbonded contacts 

(NBCs) (dashed red line) of complex RBD-C1A-B3 

Significance of docking scores Rankings: Although the RBD-3G10  complex has the 

lowest docking scores (-357.1) and ranks 20th among the 288 configurations, its Kd value is 

higher compared to other complexes. This suggests that overall stability beyond hydrogen 

bonding might depend on hydrophobic interactions and molecular packing. Conversely, the 

RBD-P4A2 (7WVL) complex, despite having a higher docking scores (-311.6) and ranking 

67th, shows the lowest Kd (8.2 x 10-15 M), reflecting an optimized hydrogen bond network 

and highly specific interactions at the antibody recognition site. It showed in Figure 3. 

 

Figure 2. The RBD-C1A-B3 complex is visualized with the RBD domain shown in 

magenta, the heavy chain of the C1A-B3 antibody in red, and the light chain in blue 
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However, as HDOCK is a rigid-body docking platform and does not explicitly account 

for solvation or entropy effects, these values should be interpreted with caution and 

supplemented with thermodynamic analysis. 

3.2. Predicted binding affinity from PRODIGY  

PRODIGY was used to predict the binding free energy (ΔG) and dissociation constant 

(Kd) of each antibody-RBD complex. The predicted ΔG (energy_prodi) values varied 

between approximately -7.6 to -19.2 kcal.mol-1, with corresponding Kd values (KD_prodi) 

ranging from 10 pM to 10 µM. 

Notably, a group of antibodies demonstrated predicted binding affinities in the low 

nanomolar or even picomolar range, suggesting strong and potentially therapeutically 

relevant interactions. These predictions help prioritize antibodies for further structural or 

experimental validation. 

3.3. Steered molecular dynamics results. 

We additionally performed steered molecular dynamics (SMD) on the five prioritized 

antibody-RBD complexes to probe unbinding. From these runs we extracted non-equilibrium 

work and the maximum pulling force (Fmax) for each complex. The results are showed in 

Table 2. 

Table 2. The maximum pulling force (Fmax) and non-equilibrium work  

for each complex. 

Complex (RBD-Ab) Fmax (pN) 
Wpull 

(kcal.mol⁻¹) 
E_HD  

E_Pr 

(kcal.mol⁻¹)  

RBD - P4A2 (7WVL) 2665.1 ± 132.6 1266.7 ± 61.4 -311.6 -19.2  

RBD - C1A-B3 (7KFW) 1848.8 ± 64.0 627.5  ± 30.5 -348.8 -18.2  

RBD - COVOX-150 (7BEI) 1616.5 ± 80.1 600.2 ± 29.7 -347.1 -17.8  

RBD - CC12.1 (6XC2) 2028.6 ± 71.0 639.3 ± 21.8 -329.6 -18.1  

RBD - 3G10 (8HN6) 1804.4 ± 53.7 565.6 ± 18.4 -357.1 -17.6 

SMD provided additional insights into the mechanical stability of the top five 

antibody-RBD complexes. Among them, P4A2 exhibited the highest maximum pulling force 

(Fmax) and non-equilibrium work (Wpull), indicating the strongest resistance to unbinding, 

consistent with its most favorable PRODIGY-predicted binding free energy. The remaining 

antibodies showed intermediate mechanical stabilities, with C1A-B3 and CC12.1 forming a 

moderately strong group, while COVOX-150 and 3G10 displayed lower Fmax and Wpull 

values. These results highlight that while docking scores provide a useful initial filter, SMD 

and PRODIGY better capture differences in binding robustness. The overall consistency 

across methods supports the reliability of the computational pipeline and reinforces P4A2 as 

the strongest candidate for subsequent validation using ELISA, SPR, and longer-timescale 

MD simulations. 

3.4. Correlation analysis 

A strong negative correlation (R = -0.9) was observed between HDOCK docking 

scores (E_HD) and PRODIGY-predicted binding free energy (E_Pr), indicating that lower 
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docking scores correspond to more favorable binding energies or wild-type SARS-CoV-2 

complexes (Figure 4). Similarly, a correlation of R = -0.9 was found between E_HD and the 

natural logarithm of the dissociation constant (ln(Kd)), suggesting that antibodies with 

stronger predicted interactions (lower E_HD) exhibit higher binding affinities (lower Kd). 

These findings align with previous studies validating HDOCK and PRODIGY against 

experimental binding data (Xue et al., 2016; Yan et al., 2017), which confirms the reliability 

of our computational approach. However, as HDOCK employs rigid docking, it may 

overlook conformational flexibility and solvation effects, potentially affecting prediction 

accuracy. Future studies should incorporate molecular dynamics simulations to account for 

these factors and further validate the prioritized antibodies. 

A full correlation analysis across all 288 docking models was not included in the 

present study because PRODIGY requires high-quality and physically realistic interface 

geometries, whereas a portion of the large-scale docking outputs did not meet the required 

structural criteria for reliable affinity prediction. Interface refinement and full-panel 

correlation analysis will be conducted in a follow-up study to provide a more comprehensive 

statistical assessment. 

  

Figure 3. Correlation plots of HDOCK docking scores (E_HD)  

with (A) PRODIGY-predicted binding free energy (E_Pr, kcal/mol) (left).  

Natural logarithm of dissociation constant (ln(Kd)) (right) for RBD-AB complexes  

In addition to the correlation between HDOCK docking scores and PRODIGY-

predicted binding free energies, we also examined the relationships between the SMD-

derived unbinding metrics and PRODIGY. A strong negative correlation was observed 

between the non-equilibrium work and the predicted binding energy with R = -0.95, 

indicating that complexes requiring higher mechanical work to dissociate also possess more 

favorable PRODIGY affinities. Similarly, the maximum pulling force showed a strong 

negative correlation with PRODIGY (R = -0.93), supporting the interpretation that 

mechanically robust complexes tend to exhibit stronger predicted binding (Figure 5). 

Although these correlations were calculated from the top five prioritized antibody-RBD 

complexes, the high magnitude of the correlation coefficients demonstrates a consistent trend 

across docking, SMD, and PRODIGY scoring. These results further reinforce the reliability 

of the computational workflow and affirm that P4A2, C1A-B3, and CC12.1 possess both 

strong mechanical resistance to unbinding and favorable predicted binding energetics. 

Future work will include epitope mapping of the top-ranked antibodies and 

comparison with clinically approved antibodies as well as mutation hotspots across SARS-

CoV-2 Variants of Concern, in order to evaluate the resilience of these candidates against 

viral evolution. 
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It should be noted that the correlations derived from the top five antibody-RBD 

complexes represent internal consistency within the prioritized subset rather than population-

wide statistical behavior. These correlations therefore serve as a validation step for selecting 

high-confidence candidates, while future work will extend the analysis to the entire 288-

complex dataset to assess global trends. 

  

Figure 5. Correlation plots of PRODIGY-predicted binding free energy  and non-

equilibrium work (left), and Fmax (right). 

4. Conclusion 

Although the present study focuses on known antibodies from CoV-AbDab, the 

novelty of this work lies in establishing a consistent and validated computational pipeline 

that integrates docking, affinity prediction, and SMD-based unbinding analysis, which can 

be applied to larger and more diverse antibody repertoires in future studies. Despite focusing 

on antibodies structurally characterized previously, the scientific contribution of this work 

lies in developing and validating a unified, reproducible, and computationally efficient 

screening pipeline. This workflow establishes the methodological foundation required for 

future large-scale screening of novel, engineered, or computationally generated antibody 

repertoires, thereby extending far beyond the scope of existing datasets. This study presents a 

reproducible and integrated computational workflow for screening antibody-RBD 

interactions, combining HDOCK docking, PRODIGY affinity estimation, and SMD-based 

mechanical stability analysis. From an initial set of 288 antibodies, five top-performing 

candidates were identified, with P4A2 emerging as the strongest binder based on docking 

scores, PRODIGY predictions, and SMD-derived Wpull and Fmax values. The strong 

correlations between SMD metrics and PRODIGY binding energies further demonstrate the 

internal consistency and reliability of the screening approach. While the current analysis 

focuses on known SARS-CoV-2 antibodies from CoV-AbDab, the workflow establishes a 

solid foundation for larger-scale antibody discovery and refinement. Future work will 

expand correlation analysis to the full dataset, incorporate equilibrium molecular dynamics 

to capture structural flexibility, and validate computational predictions experimentally 

through ELISA and SPR assays. Overall, the results provide a robust basis for guiding 

experimental antibody development in a rapid and cost-effective manner. 

Acknowledgements: This research is supported by the project B2024–SPD–09. 

References 

Cowan, J., Amson, A., Christofides, A., & Chagla, Z. (2023). Monoclonal antibodies as 

COVID-19 prophylaxis therapy in immunocompromised patient populations. Int J 

Infect Dis, 134, 228-238. https://doi.org/10.1016/j.ijid.2023.06.021   

https://doi.org/10.1016/j.ijid.2023.06.021


Dong Thap University Journal of Science, Vol. 14, No. 02S (2025): 46 - 57 

56 

 

Iyer, A. S., Jones, F. K., Nodoushani, A., Kelly, M., Becker, M., Slater, D., Mills, R., Teng, 

E., Kamruzzaman, M., Garcia-Beltran, W. F., Astudillo, M., Yang, D., Miller, T. E., 

Oliver, E., Fischinger, S., Atyeo, C., Iafrate, A. J., Calderwood, S. B., Lauer, S. A., 

Yu, J., Li, Z., Feldman, J., Hauser, B. M., Caradonna, T. M., Branda, J. A., Turbett, S. 

E., LaRocque, R. C., Mellon, G., Barouch, D. H., Schmidt, A. G., Azman, A. S., Alter, 

G., Ryan, E. T., Harris, J. B., & Charles, R. C. (2020). Persistence and decay of human 

antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in 

COVID-19 patients. Science Immunology, 5(52), eabe0367. 

https://doi.org/doi:10.1126/sciimmunol.abe0367   

Kaas, Q., Ruiz, M., & Lefranc, M. P. (2004). IMGT/3Dstructure-DB and 

IMGT/StructuralQuery, a database and a tool for immunoglobulin, T cell receptor and 

MHC structural data. Nucleic Acids Res, 32(Database issue), D208-210. 

https://doi.org/10.1093/nar/gkh042   

Lai, C. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 

(COVID-19): The epidemic and the challenges. International journal of antimicrobial 

agents, 55(3), 105924. https://doi.org/10.1016/j.ijantimicag.2020.105924 

Li, S. M, Khanh, M. (2012). Steered molecular dynamics-A Promising tool for drug design, 

Current Bioinformatics, 7(4), 342-351. https://doi.org/10.2174/157489312803901009  

Olsen, T. H., Boyles, F., & Deane, C. M. (2022). Observed antibody space: A diverse 

database of cleaned, annotated, and translated unpaired and paired antibody 

sequences. Protein Sci, 31(1), 141-146. https://doi.org/10.1002/pro.4205   

Premkumar, L., Segovia-Chumbez, B., Jadi, R., Martinez, D. R., Raut, R., Markmann, A., 

Cornaby, C., Bartelt, L., Weiss, S., Park, Y., Edwards, C. E., Weimer, E., Scherer, E. 

M., Rouphael, N., Edupuganti, S., Weiskopf, D., Tse, L. V., Hou, Y. J., Margolis, D., 

Sette, A., Collins, M. H., Schmitz, J., Baric, R. S., & de Silva, A. M. (2020). The 

receptor binding domain of the viral spike protein is an immunodominant and highly 

specific target of antibodies in SARS-CoV-2 patients. Sci Immunol, 5(48). 

https://doi.org/10.1126/sciimmunol.abc8413   

Raybould, M. I. J., Kovaltsuk, A., Marks, C., & Deane, C. M. (2021). CoV-AbDab: the 

coronavirus antibody database. Bioinformatics, 37(5), 734-735. 

https://doi.org/10.1093/bioinformatics/btaa739   

Schrödinger, LLC. (2015). The PyMOL molecular graphics system, Version 1.8. 

https://pymol.org 

Taylor, P. C., Adams, A. C., Hufford, M. M., de la Torre, I., Winthrop, K., & Gottlieb, R. L. 

(2021). Neutralizing monoclonal antibodies for treatment of COVID-19. Nat Rev 

Immunol, 21(6), 382-393. https://doi.org/10.1038/s41577-021-00542-x 

Wang, C., Li, W., Drabek, D., Okba, N. M. A., van Haperen, R., Osterhaus, A. D. M. E., van 

Kuppeveld, F. J. M., Haagmans, B. L., Grosveld, F., & Bosch, B.-J. (2020). A human 

monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications, 

11(1), 2251. https://doi.org/10.1038/s41467-020-16256-y   

Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). 

PRODIGY: a web server for predicting the binding affinity of protein–protein 

complexes. Bioinformatics, 32(23), 3676-3678. 

https://doi.org/10.1093/bioinformatics/btw514 

https://doi.org/doi:10.1126/sciimmunol.abe0367
https://doi.org/10.1093/nar/gkh042
https://doi.org/10.1002/pro.4205
https://doi.org/10.1126/sciimmunol.abc8413
https://doi.org/10.1093/bioinformatics/btaa739
https://doi.org/10.1038/s41577-021-00542-x
https://doi.org/10.1038/s41467-020-16256-y


Dong Thap University Journal of Science, Vol. 14, No. 02S (2025): 46 - 57 

57 

 

Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S.-Y. (2017). HDOCK: a web server for 

protein–protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic 

Acids Research, 45(W1), W365-W373. https://doi.org/10.1093/nar/gkx407  

https://doi.org/10.1093/nar/gkx407

