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Abstract

Spiral solutions or spiral waves can be found in many natural systems. Spiral waves were observed

in studies about the potential in brain and heart cells. Their appearance in the human heart is a

presentation of arrhythmia. The paper showed how to create spiral solutions of diffusion-reaction system

of FitzHugh-Nagumo type and the transition of spiral solutions according to the time step and space step

discretization of finite difference method. Decreasing the value of space step discretization makes the

spiral wave grow bigger, but if the value of time step discretization is increased at the same given space

step, the finite difference method will be explosive, meaning that spiral wave no longer exists.

Keywords: Reaction-diffusion equations of FitzHugh-Nagumo, space step discretization, time step

discretization.
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Tóm tắt

Nghiệm xoắn ốc hay sóng xoắn ốc có thể tìm thấy ở nhiều nơi trong thực tiễn. Các sóng xoắn ốc

được quan sát khi nghiên cứu điện thế của các tế bào não và tim. Sự xuất hiện của chúng ở tim người là

dấu hiệu của sự rối loạn nhịp tim. Bài báo đã đưa ra được cách tạo các nghiệm dạng xoắn ốc của hệ

phương trình phản ứng - khuếch tán FitzHugh-Nagumo và sự thay đổi của nghiệm xoắn ốc phụ thuộc vào

việc chọn bước thời gian và không gian của phương pháp sai phân hữu hạn. Việc giảm giá trị của bước

không gian làm cho sóng xoắn ốc to dần, còn nếu làm tăng giá trị của bước thời gian ở cùng một bước

không gian cho trước thì phương pháp sai phân hữu hạn bị lỗi (nổ), đồng nghĩa với nghiệm xoắn ốc không

còn tồn tại nữa.

Từ khóa: Phương trình phản ứng-khuếch tán FitzHugh-Nagumo, bước không gian, bước thời gian,

nghiệm xoắn ốc.
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1. Introduction  

The FitzHugh-Nagumo model is known as a 

simplified two-dimensional model from the famous 

system of Hodgkin-Huxley (Hodgkin et al., 1952; 

Nagumo et al., 1962; Izhikevich, 2007; Ermentrout, 

2009; Keener et al., 2009; Murray, 2010). 

Although the model is simple, it has many 

remarkable analytical results and retains the 

properties and biological significance. This model 

is made up of two equations of two variables u  and 

v . The first variable is the fast variable, called the 

active variable, which represents the voltage of the 

cell membrane. The second one is the slow 

variable, which represents some time-dependent 

physical quantity, such as the electrical 

conductivity of the flow of ions across the cell 

membrane. The FitzHugh-Nagumo system is 

represented by the following system, using the 

notation as in (Ambrosio et al., 2012; Ambrosio et 

al., 2013): 

      

( ) ,

,

du
f u v

dt

dv
au bv c

dt




 

   


                       (1) 

where ,a b  and c  are constants ( a  and b  are 

positive), 0 1,   t   is the time and 
3( ) 3f u u u   . 

However, this system is not strong enough to 

reflect the propagation of cell voltage in space 

(along the cell body), so the cable equations are 

used here by adding the Laplace operator to the 

system (1) as follows: 

       

( ) ,

,

t

t

du
u f u v d u

dt

dv
v au bv c

dt

 


    
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              (2) 

where ( , ), ( , ), ( , ) ,u u x t v v x t x t    d  is 

positive constant, u  is the Laplace operator of u , 
N  is a regular bounded open set and with 

Neumann zero flux boundary conditions, N  is a 

positive integer.   

This system consists of two parabolic 

nonlinear partial differential equations, showing a 

wide variety of physiologically voltage-related 

shapes and phenomena of the cell membrane 

(Ambrosio et al., 2012; Ambrosio et al., 2013). 

Note that the first equation, also known as the cable 

equation, describes the flow of potentials along the 

body of a cell (Hodgkin et al., 1952; Izhikevich, 

2007; Ermentrout, 2009). This system has been 

studied widely, but there is no specific study on the 

change of its spiral solution with different space 

and time steps. Spirals or spiral waves can be found 

in many places in practice. Spiral images are found 

in many applications. Spiral waves are observed 

when studying the electrical potential of brain and 

heart cells. In the heart, if the voltage wave has 

these patterns, the function of the heart is impaired, 

which is related to the problem of arrhythmia 

(Murray, 2010). In addition, the same results were 

found in the heart of rabbits, in the cerebral cortex 

of rats, and in the hearts of sheep. In particular, 

their presence in the human heart is a sign of 

arrhythmia. If cells in the heart's system have the 

same spiral wave at a certain time, it will obviously 

have a significant effect on the functioning of the 

heart. Therefore, the study of the change of the 

spiral solution at different time and space steps is 

very necessary because it helps us not only to better 

understand the system under consideration but also 

know how to control it and adjust the appearance of 

the spiral solution as desired. 

2. Method to create a spiral solution 

In this section, the results of the paper are 

done by numerical method, namely the finite 

difference method for the system (2), where  

3( ) 3 ,f u u u    

1, 0.001, 0, 0.1, 0.05.a b c d      

This numerical method is implemented in C++ 

and the patterns are represented in Gnuplot, with 

       0; 0;200 0;100 0;100 .T     

In Figure 2, there are two patterns corresponding 

to two solutions of the system at two different times t 

in the chosen space    0;100 0;100 .   Figure 

2(a) represents the solution 
1 2( , ,0)u x x  of the system 

(2) at the time 0t  . Figure 2(b) represents 

1 2( , ,190)u x x  at the time 190.t   All these solutions 

are called spiral solutions. 

For the system (2), in order to create a spiral 

solution, the domain   is divided into four parts 

with almost the same area. On each of those sub-

domains, we choose the initial condition as 
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constant functions ( ( ,0), ( ,0))u x v x  in such a way 

that these constant functions are regularly out of 

phase with each other at intervals on the normal 

circle of the system (1). These initial conditions can 

be chosen as shown in Figure 1 below, and by the 

finite difference method a spiral solution is 

generated as shown in Figure 2 (see also in Phan 

2019). 

 

Figure 1. Initial conditions allow the system (2) to 

have a spiral solution 

 

 

Figure 2. The solution takes the form of a spiral of 

system (2) corresponding to the initial conditions 

given in Figure 1. Figure (a) represents the solution 

1 2( , ,0)u x x  at the time 0.t   Figure (b) represents 

1 2( , ,190)u x x  at the time 190t   

Similarly, if the domain   is divided into 16 

(corresponding to 64) equal parts, then the solution 

of the system (2) will have the form of 4 

(corresponding to 16) spirals illustrated by Figure 3 

(corresponding to Figure 4). 

 

Figure 3. The solution takes the form of four spirals 

of (2).  Figure (a) represents the solution 
1 2( , ,0)u x x  

at the time 0t  . Figure (b) represents 
1 2( , ,190)u x x  

at the time 190t   

 

Figure 4. The solution has the form of 16 spirals of 

(2). Figure (a) represents the solution 
1 2( , ,0)u x x  at 

the time 0.t   Figure (b) represents 
1 2( , ,190)u x x  at 

the time 190t   

3. Transition of spiral solutions according 

to the time and space step discretization 

The results in this section are further 

performed by the finite difference method for the 

system (2), in which the time and space steps are 

continuously changed to observe the transition of 

the spiral solution as well as when it disappears. 
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Let h  and dt be the space and time steps of the 

finite difference method, respectively. 

In Figure 5, we fix 0.01dt   and change the 

value of the space step as follows: (a) 1,h   (b) 

0.9,h   (c) 0.7.h   The results show that the 

spiral gets bigger as the space step gets smaller, 

which is understandable because the smaller the 

space step is, the more specific the solution of the 

problem will be at the locations where the space 

greater is not possible. However, if the space step 

takes on a smaller value, for example 0.5h  , the 

difference method fails (explosive), the spiral does 

not exist anymore. 

 

Figure 5. The solution of (2) is in the form of a spiral 

corresponding to the initial condition given in Figure 

1, describing the solution 
1 2( , ,190)u x x  at the time 

190t  , the time step 0.01dt   and the space step 

changes as follows: (a) 1,h   (b) 0.9,h   (c) 0.7h   

In Figure 6, we fix 1h   and change the value 

of the time step as follows: (a) 0.0025,dt   (b) 

0.005,dt   (c) 0.025.dt   The results show that 

the spiral solution gets smaller and less smooth as 

the time step increases. Also, if the time step takes 

on a larger value, for example, 0.05dt  , the 

difference method is faulty (explosive), the spiral 

does not exist anymore. 

In Figure 7, we fix 0.5h   and change the 

value of the time step as follows: (a) 0.0025,dt   

(b) 0.005.dt   The results also show that the spiral 

solution does not change much, perhaps the 

solution becomes less smooth because the time step 

increases. In addition, because the space step is 

subdivided, the solution of the problem is more 

specific and the spiral wave is also larger than the 

case of 1.h   But if the time step takes on a larger 

value, for example 0.025dt  , the difference 

method is faulty (explosive), the spiral does not 

exist anymore. 

 

Figure 6. The solution of (2) is in the form of a spiral 

corresponding to the initial condition given in Figure 

1, describing the solution 
1 2( , ,190)u x x  at the time 

190t  , the space step 1h   and the time step 

changes as follows: (a) 0.0025,dt   (b) 0.005,dt   (c) 

0.025dt   

In Figure 8, we fixed 0.2h   and changed the 

value of the time step as follows: (a) 0.0001,dt   

(b) 0.0005.dt   The results show that the spiral 

wave does not change much, perhaps the solution 

becomes less smooth because the time step 

increases. In addition, because the space step is 

subdivided, the solution of the problem is 

expressed more specifically and the spiral wave is 

also larger than the case of 0.5h   and 1.h   But 

if the time step takes on a larger value for example 
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0.0025dt   then the difference method is faulty 

(explosive), the spiral doesn't exist anymore. 

 

Figure 7. The solution of (2) is in the form of a spiral 

corresponding to the initial condition given in Figure 

1, describing the solution 
1 2( , ,190)u x x  at the time 

190t  , the space step 0.5h   and the time step 

changes as follows: (a) 0.0025,dt   (b) 0.005dt   

 

Figure 8. The solution of (2) is in the form of a spiral 

corresponding to the initial condition given in Figure 

1, describing the solution 
1 2( , ,190)u x x  at the time 

190t  , the space time 0.2h   and the time step 

changes as follows: (a) 0.0001,dt   (b) 0.0005dt   

Table 1. Transition of spiral solutions according to different time and space steps of reaction-diffusion system 

of FitzHugh-Nagumo type 

Space step h  Time step dt  Transition of the spiral solution of  

system (2) 

1 

0.9 

0.7 

0.5 

0.01 

0.01 

0.01 

0.01 

The spiral appears 

The spiral grows bigger 

The spiral grows bigger  

The spiral vanishes (explosive) 

1 

1 

1 

 

1 

0.0025 

0.005 

0.025 

 

0.05 

The spiral appears 

The spiral becomes smaller 

The spiral becomes smaller 

 and less smooth 

The spiral vanishes (explosive) 

0.5 

0.5 

0.5 

0.0025 

0.005 

0.025 

The spiral appears, large and smooth 

The spiral is less smooth 

The spiral vanishes (explosive) 

0.2 

0.2 

0.2 

0.0001 

0.0005 

0.0025 

The spiral appears, large and smooth 

The spiral is less smooth 

The spiral vanishes (explosive) 
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From the above results, it is shown that the 

change of the spiral solution depends on the choice 

of time and space steps of the finite difference 

method for the system (2). Decreasing the value of 

the space step causes the spiral wave to become 

larger, and if the time step is increased at the same 

given space step, the finite difference method is 

faulty (explosive), which means the spiral does not 

exist any more (see Table 1). 

4. Conclusion 

The article has shown how to create the spiral 

solutions of reaction -diffusion system of 

FitzHugh-Nagumo type and the change of the 

spiral solution depends on the choice of time and 

space steps of the finite difference method. 

Decreasing the value of the space step causes the 

spiral wave to become larger, and if the time step is 

increased at the same given space step, the finite 

difference method is faulty (explosive), which 

means the spiral does not exist any more. In the 

next paper, the author will study the 

synchronization of spiral solutions in the case of a 

complete network with non-linear coupling. 
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