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Abstract

Nowadays, infectious diseases are disorders caused by organisms - such as bacteria, viruses, fungi

or parasites. Many organisms live in and on our bodies. They’re normally harmless or even helpful. But

certain microbes have the potential to cause disease in specific situations. It is possible for some

infectious diseases to spread from person to person. Others are spread by animals or insects. In this study,

we build certain fundamental models, such as SI, SIR, SIRS, and SEIR, and in numerical simulations, we

take into account random parameters to determine the dynamics of the model’s behavior. Finally, we

present several studies in mathematical modeling of real situation relevant to epidemiology and

population dynamic systems.
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Tóm tắt

Ngày nay, các bệnh truyền nhiễm là những rối loạn do sinh vật gây ra - chẳng hạn như vi khuẩn, vi

rút, nấm hoặc ký sinh trùng. Nhiều sinh vật sống trong và trên cơ thể người. Những sinh vật này thường

vô hại hoặc thậm chí hữu ích. Nhưng một số vi khuẩn có khả năng gây bệnh trong những tình huống cụ

thể. Một số bệnh truyền nhiễm có thể lây lan từ người này sang người khác. Một số khác lây lan bởi động

vật hoặc côn trùng. Trong nghiên cứu này, chúng tôi xây dựng một số mô hình cơ bản bao gồm SI, SIR,

SIRS và SEIR, và trong các mô phỏng số, chúng tôi tính đến các tham số ngẫu nhiên để xác định động lực

học của hành vi của mô hình. Cuối cùng, chúng tôi trình bày một số nghiên cứu về mô hình toán học của

tình huống thực tế liên quan đến dịch tễ học và các hệ thống động dân số.

Từ khóa: Các bệnh truyền nhiễm, nghệ thuật mô hình toán học, thay đổi nhận thức.
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1. Introduction

A model is a deliberate rendering of reality.

Modeling entails researching processes and

physical items, then employing replicas of those

objects in other physical environments to simulate

the behavior of the systems being researched. Even

if a real-world issue can be generalized, it is rarely

converted into a mathematical one. The ensuing

mathematical issue might not be solvable.

Therefore, it is important to idealize, simplify, or

approximate the problem by another problem that

is somewhat similar to the original problem and

can be translated into and solved mathematically

(Brauer & Castillo-Chavez, 2012). Since it existed

through the use of mathematical models, physicists,

mathematicians, engineers, astronomers,

statisticians, and biologist are researching a wide

range of problems well (Braun, 1993).

The word epidemiology is derived from the

Greek words epi (upon), demos (the people), and

logos (study, science), and means literally “the

study of what is upon the people.” More

specifically, it is a branch of science within

medicine that focuses on understanding the

dynamics of a disease within a population, trying to

predict the course of the disease, and ultimately

coming up with ways to control it. Although it is

applicable to any disease, such as cancer, metabolic

syndrome, and swine influenza, we are specifically

interested in human contagious diseases. Based on

a few presumptions, the dynamics of the diseases

are simulated and put into systems of nonlinear

differential equations. The model's various

parameters describe the rate of disease

transmission, disease survival, disease recovery,

population life expectancy, rate of immune system

deterioration over time, and other aspects that are

unique to a given disease.

2. Basic terminology

The models come in a variety of sorts based

on the number of compartments. We must first

comprehend several fundamental terms:

- Susceptible: An individual who is not

infected but is at risk of getting sick.

- Exposed: A person who has the infection but

does not show any outward symptoms.

- Infectious: An individual who is exhibiting

symptoms of the illness and is contagious.

- Recovered/Removed: After receiving

therapy, etc., the symptoms vanish, and the patient

is no longer contagious.

- Incubation Period: It is the amount of time

between being exposed to the infection and

experiencing the first noticeable symptoms of

the disease.

- Endemic: A disease is said to be endemic if it

frequently affects a population or a specific region.

- Epidemic: If there are noticeably more cases

of a disease within a short period of time in a

particular community, it is considered to be in

epidemic stage.

- Pandemic: A disease is said to be pandemic

if it is prevalent in the entire country or the world.

Each of these classes has a different number

of members, hence S(t), I(t), and R(t) are functions

of time t. The sizes of these three classes add up to

the overall population size N: N = S(t) +I(t) +R(t).

Next, we make assumptions in order to

simplify reality in order to create a model. The

Kermack-McKendrick model's first presumption is

that diseased people are likewise contagious. The

model's second presumption is that the size of the

entire population doesn't change. Systems of ODEs

that describe the dynamics in each class make up

epidemiological models. The dynamics of

susceptible, infectious, and recovered individuals are

part of one of the most basic models. Kermack and

McKendrick first proposed the approach in 1927

(Kermack & McKendrick, 1927). The system of

nonlinear equations in epidemiology produces two

equilibrium points: the disease-free equilibrium

point and the endemic equilibrium point. By

equating the system of equations to zero and finding

the values of the relevant variables, these

equilibrium points can be found. Only taking into

account nonnegative solutions to the nonlinear

system of differential equations is always useful

from a biological perspective.

In epidemiology, the reproduction number

gives the number of secondary cases one infectious

individual will produce in a population consisting

only of susceptible individuals. Mathematically,

the reproduction number plays the role of a

threshold value for the dynamics of the system and

the disease. The basic reproduction number R0 is

equal to the spectral ratio of the matrix Jf.Jv
−1

,

where F(z) is the rate of appearance of new
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infections, V(z) is the rate of transfer of individuals

in and out of the infected compartment, and z

describes the linearization of the reduced system

around the disease free equilibrium, according to

research by Diekmann and Heesterbeek and Van

den Driessche and Watmough. Consider that any

matrix's spectral ratio corresponds to its biggest

eigenvalue. The fundamental reproduction number,

R0, as stated by Driessche et al. 

(Driessche & Watmough, 2002), may

therefore be calculated as R0 = ρ(Jf.Jv
−1

), where Jf

and Jv are the Jacobian matrices associated with

F(z) and V(z) while ρ denotes the spectral radius of

the matrix Jf.Jv
−1

.

3. Some basic models and its dynamics

In this section we deal with SI, SIR, SIRS and

SEIR models.

SI (Susceptible-Infected) Model: A fundamental

epidemiological model for describing the spread

of infectious diseases is the SI model. It goes

without saying that there are only two possible

states for people: susceptible or infected.

Susceptible people are those who have not yet

caught the disease, whereas infected persons are

those who have. The SI model is employed to

forecast both the number of people who will

eventually become infected and its rate at which

the disease will spread. The system in (1) is

represented by the schematic diagram in Figure 1.

(1)

Figure 1. Schematic Diagram of SI Model

SIR (Susceptible-Infected-Recovered) Model:

The SIR model, an extension of the SI model, is

used to explain how infectious diseases spread

among people who may alternate between the three

stages of susceptible, infected, and recovery.

According to this paradigm, a person may go from

being vulnerable to becoming sick, then from

becoming infected to recovering. This model is

used to forecast the number of individuals who will

be infected over time, as well as the rate at which

the disease will spread and the rate at which

individuals will recover from the disease. The

schematic diagram in Figure 2 illustrates the

system in (2):

(2)

Figure 2. Schematic Diagram of SIR Model

SIRS (Susceptible-Infected-Recovered-Susceptible)

Model: The SIRS model, an extension of the SIR

model, is used to explain how infectious diseases

spread among people who can alternate between

four states: susceptible, infected, recovered, and

susceptible once more. According to this

paradigm, people can go from being susceptible to

becoming sick, from becoming infected to

recovering, and then from recovering to becoming

susceptible once again. This model is used to

forecast the amount of people who will contract

the disease over time, as well as the rate at which

the disease will spread and the rate at which

individuals will recover from and become re-

infected with the disease. The system (3) is

depicted by the schematic diagram in Figure 3.

(3)

Figure 3. Schematic Diagram of SIRS Model

Susceptibility-Exposed-Infection-Recovery

(SEIR) Mode: As an extension of the SIRS model,

the SEIR model is used to explain how infectious

diseases spread among people who can alternate

between four states: susceptible, exposed, infected,

and recovered. According to this concept, people

can go from being susceptible to being exposed,

from being exposed to infected, and finally from

infected to recovered. The number of people who

will eventually interact with the disease, the rate at

which it will spread, and the rate at which people
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will be exposed to, develop it and recover from it 

are all predicted using this model. The schematic 

diagram of the system in (4) is shown in Figure 4.  

                                         (4) 

 

Figure 4. Schematic Diagram of SEIRS Model 

Table 1. Description of Parameters of the models 

 

4. Numerical Simulations 

We conducted research using the four sets of 

random parameters listed in Table 2, Table 3, and 

Table 4. It displays various cases.  

Table 2. Case I 

 

Table 3. Case II 

 

Table 4. Case III 

 

Figures 5 to 8 are displayed in Case I, Figure 

9  to Figure 12 in Case II, and Figures 13 Figure 16 

in Case III. Discuss each of the three scenarios in 

detail. The rate of change in susceptible individuals 

can be seen in Figure 5. We can deduce from 

Figure 5 that it initially reached its peak value, then 

decreased, and after 15 days, it has reached a 

steady state. The stimulation of those who were 

exposed is seen in Figure 6. Individuals that are 

exposed are 60 on the first day, and as time goes 

on, that number rises to 160 by day 15. We can 

observe that it does not change beyond day 15. It 

appears to be at a steady value. In Figure 7, an 

illustration of infected people is displayed. Figure 7 

shows that the number of infected people is 40 on 

the initial day, followed by an abrupt decrease. 

After day 10, the rate of declining behavior slowed, 

and after day 15, it started to become steady. The 

rate of change for recovered individuals is seen in 

Figure 8.  The recovery rate significantly increases 

from the first day to day five. Then, on day 5, it 

reaches its highest point. It reached a steady state 

once the growth slowed. 

 

Figure 5. Simulation of susceptible individuals 

 

Figure 6. Simulation of exposed individuals 

 

Figure 7. Simulation of infected individuals 

 

Figure 8. Simulation of recovered individuals 
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Figure 9 depicts the change rate in those who 

are susceptible. It reaches a maximum value of 100 

on the initial day. then daily reduces progressively. 

The simulations of exposed people are shown in 

Figure 10. We may infer from the graph that the 

rate of exposed people is 60 on the initial day, then 

it rises and reaches its peak again on the day 

following 30. Around that, it progressively gets 

smaller after day 35. Figure 11 describes the rate of 

change in infected people with 40 initially infected. 

After that, it becomes smaller every day. The 

simulation of recovered persons is shown in Figure 

12. From this figure, we can conclude that 10 

people recovered on the first day, and then number 

increases daily. 

 

Figure 9. Simulation of susceptible individuals 

 

Figure 10. Simulation of exposed individuals 

 

Figure 11. Simulation of infected individuals 

 

Figure 12. Simulation of recovered individuals 

We can understand susceptible persons from 

Figure 13. There is a slight growth at the start of 

day 5. Then, from day 5, it increases quickly. 

Figure 14 depicts the simulation of exposed 

individuals. On the initial day, it is 60. After the 

35
th
 day, it decreases exponentially and turns to 

zero. Figure 15 shows the rate of change of 

infected individuals at the starting day is 40 then 

increases at the day 5 it attains maximum value 50. 

Then it decreases gradually. From Figure 16, we 

can understand at initially 10. Then it increases 

gradually, and it attains its maximum after day 20 

is 50. Then it decreases gradually. 

 

Figure 13. Simulation of susceptible individuals 

 

Figure 14. Simulation of exposed individuals 

 

Figure 15. Simulation of infected individuals 

 

Figure 16. Simulation of recovered individuals 
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5. Mathematical modeling on real life scenario 

As a result of the 2019-nCoV pandemic, the 

globe is nearly at a stop. More than 6.58 million 

lives were already lost. In addition to COVID-19, 

millions of people are dying from infectious 

diseases such as the swine flu, Ebola, Zika, plague, 

tuberculosis, and others (Jose et al., 2023; Ojo et 

al., 2021; Zafar, Ali, et al., 2021; Zafar, Tunç, et 

al., 2021). Controlling these infectious diseases 

was difficult due to the propensity of the bacteria, 

viruses, and parasites that cause them to change 

over time. Currently, COVID-19 is the most recent 

epidemic disease wreaking havoc on the entire 

planet. After evolving in China in late December of 

the year 2019 and rapidly spreading to other 

regions of the world, COVID-19 is a respiratory 

disease (Aba Oud et al., 2021; Mahmoudi et al., 

2021). It is the newest kind of virus caused by 

SARS COV-2 (Ivorra et al., 2020). Some of the 

early pandemic models, particularly those used to 

examine the first wave of cases (Giordano et al., 

2020; Ivorra et al., 2020; Kucharski et al., 2020; Li 

et al., 2020),  did not take into account all of the 

unique aspects of the COVID-19 pandemic 

(undetected deaths, unreported cases, social 

distancing, quarantine, etc.).  Gonzalez-Parra et al., 

2021 (Gonzalez-Parra et al., 2021) investigated two 

distinct COVID-19 virus variants and provided a 

mathematical model for any more novel variants. 

In order to reflect the disease's transmission 

dynamics in more detail, a small number of 

researchers (Gonzalez-Parra et al., 2021; Tilahun et 

al., 2020; Tong et al., 2021) have included the 

influence of vaccines in their suggested models. 

Sah et al., 2021, (Sah et al., 2021) discovered the 

effects of precipitated vaccination distribution, 

which can lessen the burden caused by the various 

coronavirus strains. A Susceptible-Latent-Mild-

Critical-Removed (SLMCR) compartmental model 

of the transmission of COVID-19 disease was 

demonstrated by Rahman and Kuddus in 2021 

(Rahman & Kuddus, 2021). A model of several 

vaccination techniques was supplemented by 

Aguilar-Canto et al. in 2022 (Aguilar-Canto et al., 

2022). Reetha et al. (Thomas et al., 2022) construct 

a mathematical modeling on Covid -19 in India, 

they are formulate four different SEIRS models and 

find the solution of the Models using  Homotopy 

Perturbation Method. And also find that the last 

model by considering the effect of asymptomatic 

patients and improve immunity by our food habits 

and taking some exercise like yoga, precaution by 

continuous awareness given by health officials. The 

model details are in below: 

Many nations sealed their borders and 

instituted a state of lockdown to impede internal 

travel as a precaution to slow the rate of infection 

or contain the spread of the virus. However, some 

nations, like India, where there are more migrant 

workers than other nations, are seeing a rise in the 

number of migrant workers returning home. 

Additionally, migratory workers are returning 

home inside the nation, from one state to another. 

Therefore, the impact of the immigration inflow on 

the population is not insignificant. The previous 

model can be altered in this situation as indicated 

below. 

 (5) 

People are taking precautions as a result of 

ongoing education provided by health experts and 

governments through media, including social 

media, avoiding unnecessary outings, routinely 

washing their hands, wearing a mask outside, etc. 

Additionally, people are able to exercise caution by 

reading the published route maps of infected 

patients. Additionally, by changing our eating 

habits and engaging in activities like yoga, we can 

boost our immunity. We alter the model (5) 

together with innate immunity and precaution to 

create the SEIRS model. Then the following form's 

model: 

   (6) 

The transmission method of 2019-nCoV is 

often clear from symptomatic individuals. That 

could happen as a result of droplets that come out 

when you cough, sneeze, etc. Yet, even singing, 

exhaling loudly at a gym, or yelling for someone to 

hear you in a nightclub might result in 2019-nCoV 
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symptoms. Fundamentally, when you express air

under pressure, it may happen in any circumstances

through droplet transmission. Also, based on the

data at hand, identified asymptomatic 2019-nCoV

individuals cannot be avoided. We alter the model

(6) together with asymptomatic infected class. then

the following form's model:

(7)

Mosquito borne diseases are the most

dangerous diseases caused by mosquitoes such as

Aedes aegypti, Aedes albopictus, Anopheles etc.

Because, throughout the world 7, 20, 000 deaths

are caused by mosquitoes. This fact makes the

mosquito the world’s deadliest animal. The optimal

way to control mosquito borne diseases is by

controlling the mosquito population. Wolbachia is

an endo symbiotic bacterium found by Wolbach in

1924. This bacterium works as a population

suppression factor and virus blocking agent in

mosquitoes. In (Joseph Dianavinnarasi et al.,

2020), the authors studied the interaction dynamics

between Wolbachia and non-Wolbachia

mosquitoes in the presence of delay and uncertainty

in the control input. The interval of stable region is

found, and the stability of the proposed results is

analyzed via spectral theory. Moreover, in 

(Dianavinnarasi et al., 2022; Joseph 

Dianavinnarasi et al., 2021), the linear matrix 

inequality theory is initially introduced into 

the newly proposed derivative called 

Caputo-Fabrizio derivative. And analyzed the 

usefulness of using this derivative over life 

cycle model of both Wolbachia and non-

Wolbachia mosquitoes. The author proved that

using CF derivative one can analyze up to

Exponential stability results not up to Mittag

Leffler stable. In (Dianavinnarasi et al., 2021), the

transmission dynamics of Wolbachia among both

population in fractional and integer order models.

An impulsive control strategy is implemented when

there is an invasion in Wolbachia. In (Joseph et al.,

2022), the authors discussed the non-fragile control

synthesis to control sugarcane borer using its own

egg parasitoid as a control, system dynamics is

analyzed using linear matrix inequality theory and

Lyapunov theory. The authors proved that the

proposed model is globally exponentially stable.

The eco-epidemic model essentially depicts a

predator-prey relationship in which populations of

either predators or preys are affected by infectious

diseases. Not only is the relationship between a

predator and prey threatened, but so is the rise in

death rates brought on by the presence of infectious

diseases. Even though the disease may affect both

prey and predator, some researchers concentrate on

the eco-epidemic model, in which the diseased

population serves as the prey (Alzahrani et al.,

2018; Dutta et al., 2022; Jana et al., 2022; Jose,

Raja, Zhu, et al., 2022b; Jose, Ramachandran, et

al., 2022; Pal et al., 2022; Rezapour et al., 2022;

Saifuddin et al., 2016). This circumstance is

supported by the eco-epidemic model for pest

management on fields and plantations (Costa & dos

Anjos, 2015; Liu et al., 2014; Yu et al., 2019). In

addition to the epidemic aspect, they also involve

some ecological components such as the Allee

effect (Costa & dos Anjos, 2015; Saifuddin et al.,

2016; Yu et al., 2019), predator switching (Pal et

al., 2022), prey refuge (Pal et al., 2022), harvesting

(Pal et al., 2022), and competition (Saifuddin et al.,

2016). To obtain more advanced novelty, they also

integrate some mathematical ways such as using

fractional-order differential equation (Nugraheni et

al., 2017; Rezapour et al., 2022; Zafar, Tunç, et al.,

2021) and delay differential equation (Dutta et al.,

2022; Jana et al., 2022) which considered more

suitable for specific cases. One simple eco-

epidemic model is given by Panigoro et al

(Panigoro et al., 2021). They propose a simpler

mode compared to the above models. This model is

almost similar to the eco-epidemic model given by

Nugraheni et al. (Nugraheni et al., 2017) and

Saifuddin et al. (Saifuddin et al., 2016). They

strengthen the novelty of their research results in

the different presentations. Two fractional

operators are used simultaneously namely Caputo

and Atangana-Baleanu-Caputo derivative. In

preliminaries, they show that both operators have a

unique solution when the initial values are non-

negative. The local and global stability of

equilibrium points as well as the existence of Hopf

bifurcation are investigated only for the Caputo

operator due to the limitation of the theoretical

support of the Atangana-Baleanu-Caputo operator.

The interesting results are shown by the numerical
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simulations. By applying a similar numerical 

scheme using Adam-Bashforth-Moulton for 

fractional derivative, all dynamics are qualitatively 

the same for the equilibrium points which have real 

eigenvalues. The difference between those 

operators occurs in the interior point when the 

eigenvalues are a pair of complex conjugate 

numbers with positive real parts. Hopf bifurcation 

occurs on both operators, but they have different 

bifurcation points with respect to the order of the 

derivative as the bifurcation parameter. The model 

with the Caputo operator experienced the Hopf 

bifurcation compared to the model with the 

Atangana-Baleanu-Caputo operator. This means 

there exist some values on the order of the derivate 

where those operators give different stability 

conditions. 

In order to comprehend the dynamics of 

corruption transmission and to decide on 

intervention techniques to root out corruption, 

mathematical models with optimal control analyses 

are helpful. Numerous authors have discussed the 

epidemiological corruption modelling technique, 

including (Abdulrahman, 2014; Brianzoni et al., 

2011; Khan, 2000). A mathematical model for 

dynamic corruption was created and examined by 

the authors of (Cuervo-Cazurra, 2016). The basic 

reproduction number, as well as the corruption-free 

and endemic equilibrium points, were identified. 

For the dynamics of corruption in (Athithan et al., 

2018) the authors used a SIR model. They further 

developed the model by adding optimum control 

using a single optimal control strategy. A 

corruption prevention model created by Khan et al. 

(Khan, 2000) showed that perfect corruption 

prevention is feasible if the ratio between the rate 

of dismissals and the rate of corruption is equal to 

one. With reference to our current situation, Sayooj 

et al. (Jose, Raja, Alzabut, et al., 2022) developed a 

mathematical model for correction that established 

stability corresponding to the corruption free 

equilibrium point (CFEP) and corruption 

persistence equilibrium point (CPEP). Through 

figures, they show the effectiveness of the results 

of the numerical simulation. The importance of 

education, political awareness, punishment, and 

transparency of political acts is also demonstrated 

using an optimum control model.  The model is 

follows: 

(8) 

Mathematical models are important in 

comprehending and studying various facets of 

human life (Ginoux et al., 2019; Helbing et al., 

2015; Rajasekar et al., 2021). Mathematical models 

(Balatif et al., 2018; Huo, Chen, et al., 2017; Huo, 

Huang, et al., 2017) can be used to study social 

behavior's or the spread of infectious disease. 

Numerous statistical models have been created and 

investigated in the area of alcohol in an effort to 

further minimize the number of drinkers (Adu et 

al., 2017; Agrawal et al., 2018). To the best of our 

knowledge, only a few scholarly articles have been 

written on substance addiction. Sayooj et al. (Jose, 

Raja, Zhu, et al., 2022a) developed a model for 

substance addictions and shown the significance of 

awareness and Strong determination. The stability 

and bifurcation have also been examined, along 

with the number of addiction generation cases. 

Here is the model: 

  (9) 

6. Conclusions 

These studies indicate that the practice of 

mathematical modeling has the ability to alter how 

we view the world. We can better grasp the 

complexity of our environment and how it impacts 

us by using mathematical models to examine data 

and make predictions. We may also find patterns 

and trends in data using mathematical modeling, 

which can then be utilized to make judgments and 

come up with solutions. Ultimately, mathematical 

modeling can help us to better understand our 

world and make more informed decisions. 
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