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Abstract

In this paper we establish necessary and sufficient condition for zero duality gap of the optimization
problem involving the general perturbation mapping via characteringsetunder the convex setting. An
application to the class of composite optimization problems will also be given to show that our general
results can be applied to various classes of optimization problems.

Keywords: Characterizing set, composite optimization problem, perturbation function, zero duality gap.

MOT CACH TIEP CAN THONG NHAT CHO KHOANG CACH POI NGAU
BANG KHONG CHO BAI TOAN TOI UU LOI

Ping Hai Long va Tran Hong Mo~

Khoa Su pham va Khoa hoc co ban, Trieong Pai hoc T ién Giang, Viét Nam
“Téc gia lién hé: Tran Hong Mo, Email: tranhongmo@tgu.edu.vn
Lich sir bai bao
Ngay nhdn: 13/5/2021; Ngay nhdn chinh swa: 26/7/2021,; Ngay duyét dang: 08/9/2021

Tom tat
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1. Introduction

It is well known that duality theory plays an
important role in optimization. For a primal
problem, there are different ways to define its dual
problems (Feizollahi et al., 2017, Huang & Yang,
2003, Li, 1995, Yang & Huang, 2001). The zero
duality gap is known as the state in which the
optimal values of the primal problem and that of its
dual problem are equal. Many attempts have been
made to study the zero duality gap for various
classes of optimization problems in recent decades
(Feizollahi et al.,, 2017, Huang & Yang, 2003,
Jeyakumar & Li, 2009a, Jeyakumar & Li, 2009b,
Jeyakumar & Wolkowicz, 1990, Li, 1995, Huang
& Yang, 2003, Yang & Huang, 2001, Li, 1999,
Long & Zeng, 2020, Rubinov et al., 2002). In this
paper, we establish characterizations of zero duality
gap property for the general optimization problem
which can then be applied to many different
specific classes optimization problems.

We are concerned with the so-called
perturbation function ¢:X xY —Ru{+c} and

the optimization problem
(P)  infp(x.0,)

Where X,Y are locally convex Hausdorff
topological vector spaces, Y, is non-empty convex
cone in Y. We assume in this paper that
domg(.,0,) =, or in other words, the problem
(P) is feasible, meaning that v(P)<-+co. It is
worth  commenting that many classes of
optimization problems can be written in the form of
(P) (see Bot, 2010). So, investigating the problem
(P) gives us a unified approach to all optimization

problems.

In this paper, we study characterizations of the
zero duality gap property for the problem (P) via

its characterizing set which is inspired by the
concept of characterizing set introduced by Dinh et
al. (2020) for the wvector optimization with
geometric and cone constrains. It is worth
observing that the characterizing set is rather
simpler than those sets in the form of epigraph of
conjugate mapping. Therefore, the conditions
imposed on the characterizing set will be easier to
handle than the ones related to the epigraph of
conjugate mapping proposed recently to examine
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the zero duality gap property (see, e.g., Jeyakumar
& Li, 2009a).

The paper is organized as follows: In Section
2 we recall some notation and introduce some
preliminary results which will be used in the
sequel. Characterizing set and Lagrange dual
problems of the problem (P) are introduced in

Section 3 with related basic properties. Section 4 is
devoted to establish the main results of this paper,
that is, the characterization of zero duality gap for
the problem (P) under the convex setting. As an

illustrative example, in Section 5, we show how to
apply generalized results to the classes of
composite optimization problems.

2. Preliminaries

Throughout the paper, we consider X and Y
the locally convex Hausdorff topological vector

spaces with topological dual spaces X* and Y,
respectively. Y, is a non-empty convex cones in Y

while Y aims the set of positive functionals on Y
with respectto Y, , i.e.,

Y ={y eY :«(y' ,k)y>0 forall keY}

Let f 1 X — R =R {00, +o0). Domain,
epigraph, and hypograph of f are defined by,
respectively,

dom f :={xe X : f(x)#+x},
epi f ={(X,@) e X xR: f(X)<a},
hyp f :={(X,a) e X xR: f(X) > a}.

f is said to be proper if f(x)=—oo forall xe X
and domf #&J. We say that f is convex if the
following condition holds for all x,x, e X and
a<(0,1)

flax, +(1-a)x,)<af(x)+(1—a)f(x,).

It is easy to see that f is convex if and only if
epi f is a convex subset of X xIR. The conjugate
function of f is definedas f*: X" — R such that

F7(x7) = supl{x", ) = f (x)].

xeX

We consider in Y the partial order induced by
Y,, =, , defined as

+

.S, Y, ifandonlyif y,—vy €Y.



Dong Thap University Journal of Science, Vol. 11, No. 5, 2022, 09-18

We also enlarge Y by attaching a greatest element
+oo, and a smallest element —oo,, which do not
belong to Y, and define Y*: =Y U{-oo,,+x,}
Let H: X —>Y*. We say that H is a Y, -convex
mapping if, for all x,x, € X and « €(0,1),

H(ax +1-a)X,) <, aH(x)+(1-a)H(x,).We

define the domain of H as
domH :={xe X :H(x) #+x,} and say that H is

proper if —o, ¢ H(X) and domH =&. When H

is a proper mapping, the image and the graph of
H are defined by, respectively,

imH :={H(x):xedomH},
grH :={(x,H(x)):xedomH}.

We say that g:Y >R is a Y, -nondecreasing
function if g(y,)<g(y,) whenever y, <, y,. In
the meantime, for y* eY", we convention that

(v, HO)
+00

. if xedomH
(y e H)() =
else.

3. Characterizing set and Lagrange dual problems

3.1. Characterizing set

Corresponding to the problem (P), we
consider the characterizing set

¢:= [ Jepig(x,.) =Y xR.
xeX

Proposition 3.1. Under the current
assumption domg(.,0,) =<, one has (0,,r)e¢
for some r eR. In particular, €= J.

3.1)

Proof. As domg(.,0,) =, there exists
X e X such  that #(X,0,) eR. Take
r:=¢(X,0,) R, onehas (0,,T) eepig(X,.) =€,

and we are done. \
The convexity of ¢ is shown in the following
proposition.
Proposition 3.2. If ¢ is convex then € is a
convex subset of Y xR .

Proof. We begin by proving that ¢ is image
of the set epig by the conical projection
Ty - X XY xR Y xR, 7z, (X, y,r)=(y,r) for
all (x,y,r)e X xY xR. Indeed, for all (y,r)eY xR,

(y,r)eC<=3Ixe X:(y,r)eepig(x,.)
SIXe X r=g(X,y)
SIXe X (XY, rNed
< (y,r)en, epig.
So, if ¢ is a convex function then epi¢ is a

convex subset of X xY xR which yields that
¢ =1, epig isconvex, as well. O

The next proposition gives a presentation of
the value of the problem (P) via its characterizing

set €.
Proposition 3.3. It holds

v(P)=inf{reR:(0,,r) eC}.

Proof. Let us denote C:={reR:(0,,r)eC}.
We will prove that v(P) =infC.

Firstly, recall that
v(P) =infé(x.0y).

Take arbitrarily r €C. Then, there exists a net
(r),, such that (O,,r),, ¢ and r —r. For
each iel,as (0,,r)ed, there is x, € X such that
¢(Xi 10Y) < r| ' By (32)’ ¢(Xi 10Y) 2 V(P) ’ and hence,
v(P)<r, for all iel. Letting r —>r, we get
v(P)<r.

Take 7 >v(P). It follows from (3.2) that there
is x, € X satisfying 7> ¢(x,,0,):=r,. Note that

(OY’r17) eepi¢(xl77')CQ:’
r,e{freR:(0,,r)ec}cC.

Briefly, we have just shown that, for all 7 >v(P),
there exists r, € C such that that n>r, .

(3.2)

which leads to

So, v(P) =inf C and we are done.

3.2. Lagrange dual problems

The Lagrange dual problem and the loose
Lagrange dual problem of (P) are defined as

follows, respectively,

(D) sup. i)nf [(x,¥)+{y", ],
y (XY eXxY

(B sup inf [P0GY)+<Y YL
yrey; X,y)eXxY

11
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It is worth noting that y~ in the dual problem
(D)can be considered as the Lagrange multiplier
while the one in (D,) also can be understood as a
positive Lagrange multiplier.

Proposition 3.4 (Weak duality).

v(D,) <v(D) <v(P) < +o.

Proof. The first inequality follows
immediately from the property of supremum. For
the second inequality, taking arbitrarily X e X , we
will prove that

v(D) <¢(X,0,).
Indeed, forall y" €Y", one has

(3.3)

D.:= inf {4(x, y)+{y v}

(x,y)eXxY
<@(X,0,)+(y",0,) = ¢(X,0,).
Hence,
v(D) = sup Dy* <¢(X,0y).

y*eY*

We have just shown that (3.3) holds for any X € X.
This leads to the fact that

v(D) < iYQ£¢(X,OY) =v(P).
The last one comes from the fact that (P) is
feasible, and the proof is complete. a
Theorem 3.1. Assume that ¢ is convex. Then,
one has
v(D)=inf{reR:(0,,r) eC¢}.
Moreover, if v(D) R then
v(D)=min{r eR:(0,,r) eC}.
Proof. Denote
M:={reR:(0,,r) ec}.

It follows from Proposition 3.1 that M= J.
Let us divide the proof into three steps.

e Step 1. Take arbitrarilyr e M.We claim
thatv(D)<r. As re M, one has (0,,r)e¢, and
hence, there exists a net ((y;,r)),,, =€ such that
(i) > (@0,.1).

Foreach iel,as (y,,r) e, thereis x € X
such that (y;,r,) eepig(x;,.), or equivalently,

iel

12

L= 4(%,Y:)- (3.4)

Next, taking arbitrarily y* €Y ", one has

D.:= inf {4(x, y)+{yL
(X,y)eXxy (35)

<P ¥) + Y Y-
Combining (3.4) and (3.5) gives Dy* <r+y5 Y

for all iel. Proceeding to the limit, we obtain
Dy* <r (recall that (y,,r,) —(0,,r)). So,
v(D)=supD, <r.
y*EY* y

e Step 2. Taking n <R such that >v(D),
we will show that 77 € M. On the contrary, suppose
that ne M. Then, it follows from this that
©y,7) ¢ . As ¢ is aconvex function, the set ¢ is

convex (see Proposition 3.2), and hence, ¢ is
convex as well. So, according to the separation
theorem (see Rudin, 1991, Theorem 3.4), there are

V' eY", @eR and 1 eR such that

An<a<{y,y)+Ar, Y(y,r)e¢. (3.6)

We next prove that 4 > 0. Fix X e domg(.,0,)
(it is possible as dom(.,0,)=J). Then we have
#(X,0,)eR. Set T =max{n,#(X,0,)} Then, one
has T >¢(X,0,), hence, (0,,T)eepig(X,)c¢€
which, together with (3.6), yields An<AF, or
equivalently, ~A(F—#z)>0. Combining this
inequality with the fact that ¥ >7 (by the definition
of ) we obtain A >0.Consequently, it follows
from this and (3.6) that
n<a<{y,y)+r,
1, .1
where § .—7y and a.-j
It is clear that for any (x,y) edom¢, one has

(v.4(x,y)) eepig(x,.) =€,
and hence, (3.7) entails

n<a<{y,y)+¢(xy).

Y(y,r) ec, (3.7)

Thus,
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inf {a(x,y)+<(¥", )}

(x,y)edomg¢

= inf {g(x,y)+(¥", ¥}

(X,y)eXxy

n<ac<

This implies that
n<sup inf {¢(xy)+(y"y)}=v(D)

y* o * (X,y)eXx

which contradicts the assumption 7 >v(D).So,
n €M as desired.

e Step 3. Conclusion. We have just shown that;

(M) v(D)<r, Vr e M (Step 1).

(if) Take ¢ >v(D).Then, there exists neR
such that £ >#n>v(D) (recall that v(D) <+, see
Proposition 3.4). According to Step 2, one has
ne M. Briefly, for all ¢ >v(D), there is ne M
such that £ > 7.

We thus get
v(D) =inf M.

We now assume further that v(D) e R. Then,
it is obvious that v(D)>v(D). Replacing n by
v(D) in Step 2, we get v(D) e M. This, together
with (i), yields that v(D) = min M. O

Theorem 3.2. Assume that ¢ is convex and
the following condition holds

from (i) and (ii) that

(C,) #(X,.)isbounded fromaboveonY,
for some X € X.
Then, v(D,) =inf{reR:(0,,r) ¢}
Moreover, if v(D,)eR,
v(D,) =min{r eR:(0,,r) e}.
Proof. Let us set
M:={reR:(0,,r)ec}.

It is easy to see that v(D,)<v(D). So, it
follows from Theorem 3.1 that v(D, ) <inf M.

then

Next, taking 7R such that n>v(D,), we
will show that 7 e M. Suppose, contrary to our
claim, that e M. By the same argument as in
Step 2 of the proof of the previous theorem, there
exist " eY" and & € R such that

n<a<{y,y)+r, V(y,r)ec. (3.8)

e We now prove that §* Y. To do this, take
arbitrarily k €Y, . Then, we only need to show that
(§",k)>0. As (C,) holds, there are e X and
M >0 such that ¢(%,k)<M for all keY,, which
yields ¢(%, k) <M for all x> 0. Hence, for any
u>0, (uk,M)e¢, and then, (3.8) leads to

n<(uky+M, Vu>0,
or equivalently,
(ko >1M
y7i

Letting z — +oo, one gets (y*,k)>0, which

implies §" eY,".

Yu>0.

o It is obvious that
(Y,0(x,y)) eepig(x,.) =€ for all (x,y)edomeg.
So, it follows from (3.8) that

n<a<{y,y)+¢(xy) for any (xy)edomg,
and hence,

n<as< inf {p(x,y)+<(¥, ¥}
(x,y)edomg¢

= |n1:( Y{¢(X’ y) + <y*v y>}

(x,y)eXx
<sup inf {g(x,y)+(y" . )}
y*EY:(X,y)EXXY

=v(D,).

This contradicts our assumption n>v(D,).
Consequently, we arrive atn e M.

The rest of the proof runs as in Step 3 of the
proof of Theorem 3.1, one gets v(D,)=inf M,
and v(D,)=min M if v(D,)eR. 0

4. Characterization of zero duality gap
under convex setting

We are in the position to establish the main
results of this paper, that is characterizing zero
duality gap for general vector optimization problem
(P) in convex setting. We assume throughout this

section that ¢ is a convex function.

Definition 4.1. We say that the problem (P)
has zero duality gap if v(P)=v(D) and that (P)
has zero loose duality gap if v(P) =v(D,).
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According to Proposition 3.4, one has
v(D,)<v(D)<v(P). So, if v(P)=v(D,) then
v(P) =v(D), or in the other words, if (P) has zero
loose duality gap then it has zero duality gap.

It is easy to see that
€N ({0, }xR) =€ {0, }xR) =€ ~ ({0, }xR), (4.1)
where the last equality follows from the fact that

0, xR is a closed subset of Y xR. Let us
introduce the qualifying condition:

(CQ)  ¢n{0,}xR)=¢n{0,}xR), (4.2)
which also means that the converse inclusion of

(4.1) holds. It is observing that the condition (CQ)

is a general type of the one introduced recently by
Khanh et al. (2019) when they studied zero duality
gap for linear programming problems.

Theorem 4.1 (Characterization of zero duality
gap). The following statements are equivalent to
each other:

(i) (CQ) holds.

(ii) (P) has zero duality gap.

Proof. [(i)= (ii)]Let 7, :YxR—R be the
conical projection from YxR to R (i.e,

e (y,r)=r for all (y,r)eY xR). According to
Proposition 3.3 and Theorem 3.1, one has

v(P)=inf{reR:(0,,r) ¢}
=inf z, (€ {0, }xR)

and
v(D) =inf{reR:(0,,r) ¢}
=inf ﬂR(Eﬂ({OY}xR)).
So, if (CQ) holds then v(P)=v(D), which is
nothing else but (ii) .
[(ii) = (i)]Assume that (ii) holds, i.e.,
v(P) =v(D). The proof is completed by showing

that (i) holds. According to (4.1), it is sufficient to
show that

¢N{0,}xR)c€N{0,}xR). (4.3)

14

take
that

For this purpose, we
©,,F)e¢n{0,}xR). We now show
0,,1) e ({0, }xR). Indeed, as

v(D) =inf{r eR:(0,,r) €€}

(see  Theorem 3.1), one has T =>v(D).
Consequently, by assumption that (ii) holds, we

obtain:
T 2v(P) =infé(x.0, ). (4.4)

For each neN", we set r, := F+i. The last
n

inequality (4.4) implies that r, > inf .x#(x,0,) for
any neN", which leads to the existence of x e X
such that r, >¢(x,,0,) for any neN". Hence,
0y,r,) eepig(x,,.) €, giving rise to
Oy ,r,) €N (0, xR). This, together with the fact
that (0,,r)—(0,,F), yields (0,,F) e€ ({0, }xR),
which completes the proof. 0

Example 4.1. Let X, be a non-empty convex

cone in X. We consider the equality constrained
linear programming problem of the form:

(EP)  inf(¢,x)
st. Ax=b
Xxe X,

where e X',beY,and A being a continuous
linear function from X to Y.

Let us introduce the perturbation mapping
¢: X xY - R U{+o0} such that

(¢, x) ifAx+y=bandxeX,
+oo  else.

(X, Y) ={

Then, (EP) can be rewritten as inf#(x,0,) in the
xeX

form of (P). The characterizing set ¢ now reduces
to the set

M ={(b—Ax,<§,x>+r):XE X+,r20}
while the dual problem (D) becomes
(ED) sup(y".b)
st. & —-A'y eX!
y ey’
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In this case, the condition (CQ) collapses to
M N ({0,}xR) =M n({0,}xR). According to
Theorem 4.1, one has inf(EP)=sup(ED) if and
only if M n({0,}xR) = M n ({0, }xR).

Theorem 4.2 (Characterization of zero loose
duality gap). Assume that the condition (C;) in

Theorem 3.2 is fulfilled. Then, the following
statements are equivalent to each other:

(i) (CQ) holds.
(i) (P) has zero loose duality gap.

Proof. Similar to the proof of Theorem 4.1,
using Theorem 3.2 instead of Theorem 3.1. O

We now consider the new qualifying
condition
(CQR) €N {0, }xR)=CN({0,}xR).

We say that € is closed regarding the set
0, xR if (CQR) holds. It is worth observing that
if (CQR) holds, then (CQR) does, too.

The next corollary is an
consequence of the above theorems.

Corollary 4.1 Assume that (CQR) holds.
Then, it holds:

(i) (P) has zero duality gap.

(if) If (C,) in Theorem 3.2 holds then (P)
has zero loose duality gap.

Proof. As (CQR) holds, one has

immediate

€N {0, IxR) =€ N {0, }xR) =€ N ({0,}xR),
which means that (CQ) holds. The conclusion now
follows from Theorems 4.1 and 4.2. 0

5. Application: Zero duality gap for
composite optimization problems

In this last section, we apply the general
results established in the previous sections to
derive zero duality gap for the composite
optimization problem. We are concerned with the
composite optimization problems, of the form (Bot,
2010, Bot et al., 2005, Dinh & Mo, 2012)

(CP) inflf()-+(g- H)O]

where X,Z are locally convex Hausdorff
topological vector spaces, Z, is non-empty convex
cone in Z, f:X >R g:Z >R, and
H:X —>Z° are proper mappings such that
domf "H*(domg)=< and we adopt the
convention g(+o0,) = 0.

In the rest of this section, we will establish
various characterizations of zero duality gap for the
problem (CP) due to different choices of the
perturbation function ¢ introduced in Section 1.

5.1. The first way of transforming
Consider Y=2Z,Y,=Z,, and ¢:XxZ >R
defined by
#(x.2)= £ () +g(H(x)-2).
It is easy to see that
domg,(.,0,) =dom(f +g-H)
=dom f nH*(domg),

(5.1)

and hence, by above assumption, domg,(.,0,) = <.

It is worth noting that when taking ¢ = ¢, the

problem (P) collapses to the problem (CP). In this
case, characterizations of zero duality gap for the
problem (P) are also the ones for the problem (CP).

The next lemma gives us specific forms of the
characterization set ¢ and dual problems (D) and

(D) in this setting.

Lemma51.WithY=2Z,Y =Z_,and ¢=¢
given by (5.1), the set ¢, the problems (D) and
(D,) become, respectively,

¢, :=im(H, f)—hyp(-g), (5.2)

and
(CD") sup {—g"(z*)+inI[f(X)+<2*,H(X)>]},

* *
z edomg

(€D)) sup {-9°(z") +inf[f(x)+(z", HODI},

z’edomg*mzi
whereim(H, f) ={(H(x), f(x)) : x edomH ~dom f }.

Proof. See Appendix A. 0

We now establish the first characterization of
zero duality gap for the problem (CP) and the one
of zero loose duality gap for the problem (CP).
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Corollary 5.1 (Characterization of zero
duality gap 1). Assume that f is convex, that g is

convex and Y, -nondecreasing, and that H isa Y,

-convex mapping. Then, the following statements
are equivalent:

(i) €, n{0,}xR) =€, n{0,}xR),
(i) v(CP) =v(CD").

Proof. The convexity of ¢ implies directly

from the above assumption. Then, the conclusion
follows from Theorem 4.1 and Lemma 5.1. 0

Corollary 5.2 (Characterization of zero loose
duality gap 1). Assume that the assumption of
Corollary 5.1 holds. Assume further that the
following condition holds

) Ik e X :g(H(X)—2Z,)isbounded
from above.

Then, the following statements are equivalent:

(i) €& N{0,IxR)=¢ {0, }xR),

(ii) v(CP)=v(CD}).

Proof. It follows from Theorem 4.2 and
Lemma 5.1. 0

5.2. The second way of transforming

We now take Y =XxZ,Y, ={0,}xZ,, and
the perturbation ¢, : X x X xZ — R defined by

o, (XX, 2)= f(x+X)+g(H(x)—z). (5.3

It is easy to check that domg,(.,0,,0,) =D .
It is worth observing that in this case, taking
¢=¢,,the problem (P) collapses to the
problem (CP).

The formulas of characterization set ¢ and
dual problems (D) and (D,) in this the case are
given by the following lemma.

Lemma 5.2. With Y =X xZ, Y, ={0,}xZ,

and ¢ = ¢, given by (5.3), the set € becomes
¢, :=gr(0;, f)—gr(=H,0)—{0, }>xhyp(-g), (5.4)
while the problems (D) and (D,) become, respectively,

€D sup  {FX)g (@) H) (X,

", z%)edom f *xdomg™

16

sup  £F (x)-9"@)Hz"H) =)}

X" dom £*

(€D))
I edomg*r\Y:
Proof. See Appendix B. 0

By combining Lemma 5.2 to Theorem 4.1 and
to Theorem 4.2, respectively, we get directly the
consequences as follows:

Corollary 5.3 (Characterization of zero
duality gap 2). Assume all the assumption of
Corollary 5.1. Then, the following statements are
equivalent:

(i) €, "0 IxRx{0,) =€, n{O0, }xRx{0,3),

(iiy v(CP)=v(CD?).

Corollary 5.4 (Characterization of zero loose
duality gap 2). Assume all the assumption of
Corollary 5.1. Assume further that the condition
(C,) in Corollary 5.2 holds Then, the following
statements are equivalent:

(i) €, {0 IxRx{0,}) =€, ({0, }xRx{0,}) ,
(i) v(CP)= v(CDf) .
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Appendix
Proof of Lemma 5.1.

(i)Prove that € =¢,. Take (z,r)e€. Then,
there exists xe X such that (z,r)eepig(Xx,.),
which means r>g¢(x,z) = f(x)+9g(H(x)—2z), or
equivalently, f(X)—r<—g(H(X)—2). So,
(H(x)—z, f(X)—r) ehyp(—g), and hence,

(z,r)=(H(x), f(x) - (H(X) -z, f(x)-r)
e (H(x), f(x)) —hyp(-9).
Moreover, the
r>f(x)+g(H(X)-2) also
x edom f mdomH =dom(H, f).
(z,r) eim(H, f)—hyp(-9) .

Take (z,r)ec,. Then, there  are
xedom(H, f)=dom f ndomH and (u,a)<hyp(-g)
such that (z,r) =(H(x), f (X)) —(u,«) , which means

z=H(X)—u and (5.5

As (u,a)ehyp(-g), one has a<—g(u), or
equivalently, —a>g(u), and hence, by (5.5),
r>f(x)+gu)=fx)+gHX —-2)=¢(X2).
This yields (z,r) eepig (x,.) =€, and we are done.

inequality
leads to
So, one gets

r=f(x)-a
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(i) Prove that sup(D)=sup(CD"). By the
definition of the Lagrange dual problem (D) (see
Subsection 3.2), one has sup(D)=supZ*EZ*Dz*

where

D.:= inf [4(x2)+(z,2)]

(x,2)eXxZ

(recall that, at thistime, Y =Z and ¢ =¢).
Foreach z* €Z", according to (5.1), we have

DZ*= inf [f(X)+g(H(X)-2)+(z",2)]

(x,2)eXxZ

= LT +9()+(Z H(x)-w)]

(x,u)eX

= —sup[(z",u)—g (u)]+|nf[f(X)+<Z HX))]

ueZ

=-g' (¢ )+'X”I[f(x)+<z yH(X))]
So, we get
sup(D) = sup{-g (z )+|nf[f(X)+<Z HO)I}

Fez*

= sup {~9'(z" )+|nf[f(X)+<Z HEI}

7*edomg”®
=sup(CD")
where the third equality follows from the fact that
g"(u") = +oo whenever u” ¢domg"”.

(iii) Similar arguments apply to the problem
(D,)to obtain sup(D,) =sup(CD!), and the proof
is complete. O

Proof of Lemma 5.2.

Prove that € =¢,. Take (X',z,r)ec. Then,
there is xe X such that (x,x',z,r)eepig(X,.,.),
ie.,

r>¢,(x,x,z)= f(x+x)+g(H(x)-z). (5.6)
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On the other hand, we can rewrite (x’,z,r) as
(x',z,r)=(x+x,0,, f(x+x"))—(x,—H(x),0)
-0y, H(X) =z, f(x+X)—T). (5.7)
It follows from (5.6) that

X+X"edom f =dom(0,, f),
xedomH =dom(—H,0),

and
z<—g(H(X)—2).
This, together with (5.6), yields

(X',z,r) egr(0,, f)—gr(-H,0) —{0, }xhyp(-9).
Conversely, take (X',z,r) e€,. Then, there are

uedom(0,, f) =dom f, vedom(—H,0) =domH,
and

(w, ) € hyp(-g)

such that

(x,z,r)=(u,0,, f (u)) —(v,—H(v),0) - (0, ,w, @),

and hence

f(x+x)-—

r=f@Uu)-a.(5.8)
As (w,@)ehyp(-g), we have a<-g(u).
Combining this with (5.8) —a > g(u), we get
r>fu)+gw)=fv+x)+g(H()-2)
=¢,(u,x,2).

Consequently, (X,z,r)eepig,(u,.)c¢,
are done.

X'=u-v, z=H(v)-w and

and we

The proof of equalities sup(D) =sup(CD?)
and sup(D) =sup(CD?)is similar as in that of
Lemma 5.1. N



