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Abstract  

In this paper we establish necessary and sufficient condition for zero duality gap of the optimization 

problem involving the general perturbation mapping via characteringsetunder the convex setting. An 

application to the class of composite optimization problems will also be given to show that our general 

results can be applied to various classes of optimization problems. 
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1. Introduction 

It is well known that duality theory plays an 

important role in optimization. For a primal 

problem, there are different ways to define its dual 

problems (Feizollahi et al., 2017, Huang & Yang, 

2003, Li, 1995, Yang & Huang, 2001). The zero 

duality gap is known as the state in which the 

optimal values of the primal problem and that of its 

dual problem are equal. Many attempts have been 

made to study the zero duality gap for various 

classes of optimization problems in recent decades 

(Feizollahi et al., 2017, Huang & Yang, 2003, 

Jeyakumar & Li, 2009a, Jeyakumar & Li, 2009b, 

Jeyakumar & Wolkowicz, 1990, Li, 1995, Huang 

& Yang, 2003, Yang & Huang, 2001, Li, 1999, 

Long & Zeng, 2020, Rubinov et al., 2002). In this 

paper, we establish characterizations of zero duality 

gap property for the general optimization problem 

which can then be applied to many different 

specific classes optimization problems. 

We are concerned with the so-called 

perturbation function : { }X Y      and 

the optimization problem  

(P) ( ,0 ),inf Y
x X

x


 

Where ,X Y  
are locally convex Hausdorff 

topological vector spaces, Y is non-empty convex 

cone in .Y  We assume in this paper that 

dom (.,0 )Y  , or in other words, the problem 

(P)  is feasible, meaning that (P) <  . It is 

worth commenting that many classes of 

optimization problems can be written in the form of 

(P) (see Boţ, 2010). So, investigating the problem 

(P)  gives us a unified approach to all optimization 

problems. 

In this paper, we study characterizations of the 

zero duality gap property for the problem (P)  via 

its characterizing set which is inspired by the 

concept of characterizing set introduced by Dinh et 

al. (2020) for the vector optimization with 

geometric and cone constrains. It is worth 

observing that the characterizing set is rather 

simpler than those sets in the form of epigraph of 

conjugate mapping. Therefore, the conditions 

imposed on the characterizing set will be easier to 

handle than the ones related to the epigraph of 

conjugate mapping proposed recently to examine 

the zero duality gap property (see, e.g., Jeyakumar 

& Li, 2009a). 

The paper is organized as follows: In Section 

2 we recall some notation and introduce some 

preliminary results which will be used in the 

sequel. Characterizing set and Lagrange dual 

problems of the problem (P)  are introduced in 

Section 3 with related basic properties. Section 4 is 

devoted to establish the main results of this paper, 

that is, the characterization of zero duality gap for 

the problem (P)  under the convex setting. As an 

illustrative example, in Section 5, we show how to 

apply generalized results to the classes of 

composite optimization problems. 

2. Preliminaries 

Throughout the paper, we consider X and Y  

the locally convex Hausdorff topological vector 

spaces with topological dual spaces X   and Y  , 

respectively. Y  is a non-empty convex cones in Y  

while Y 

  aims the set of positive functionals on Y  

with respect to Y , i.e.,  

* * *:={ : , 0 for all }.Y y Y y k k Y

       

Let : : { , ).f X      Domain, 

epigraph, and hypograph of f  are defined by, 

respectively,  

dom := { : ( ) },

epi := {( , ) : ( ) },

hyp := {( , ) : ( ) }.

f x X f x

f x X f x

f x X f x

 

 

  

  

  

 

f  is said to be proper if ( )f x    for all x X

and dom f  . We say that f  is convex if the 

following condition holds for all 1 2,x x X and 

(0,1)  

1 2 1 2( (1 ) ) ( ) (1 ) ( ).f x x f x f x         

It is easy to see that f  is convex if and only if 

epi f  is a convex subset of X  . The conjugate 

function of f  is defined as :f X    such that  

( ) = [ , ( )].sup
x X

f x x x f x  



    

We consider in Y  the partial order induced by 

Y , Y
, defined as  

1 2 2 1if and only if .Yy y y y Y
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We also enlarge Y  by attaching a greatest element 

Y  and a smallest element ,Y  which do not 

belong to ,Y  and define := { , }.Y YY Y     
Let : .H X Y   We say that H  is a Y

-convex 

mapping if, for all 
1 2,x x X  and (0,1),  

1 2 1 2( (1 ) ) ( ) (1 ) ( ).YH x x H x H x       We 

define the domain of H  as 

dom :={ : ( ) }YH x X H x    and say that H is 

proper if ( )Y H X   and domH  . When H  

is a proper mapping, the image and the graph of 

H  are defined by, respectively,  

im := { ( ) : dom },

gr := {( , ( )) : dom }.

H H x x H

H x H x x H




 

We say that :g Y   is a Y -nondecreasing 

function if 1 2( ) ( )g y g y  whenever 1 2.Yy y  In 

the meantime, for y Y  , we convention that  

, ( ) if dom
( )( ) =

else.

y H x x H
y H x




  



 

3. Characterizing set and Lagrange dual problems 

3.1. Characterizing set 

Corresponding to the problem (P),  we 

consider the characterizing set 

:= epi ( ,.) .
x X

x Y


 C              (3.1) 

Proposition 3.1. Under the current 

assumption dom (.,0 ) ,Y   one has (0 , )Y r C  

for some r . In particular, C . 

Proof. As dom (.,0 ) ,Y  there exists 

x X  such that ( ,0 ) .Yx   Take 

:= ( ,0 ) ,Yr x 
 
one has (0 , ) epi ( ,.)Y r x C,  

and we are done.                                                      

The convexity of C  is shown in the following 

proposition. 

Proposition 3.2. If   is convex then C  is a 

convex subset of Y  . 

Proof. We begin by proving that C  is image 

of the set epi  by the conical projection 

: ,Y X Y Y      ( , , ) = ( , )Y x y r y r   for 

all ( , , ) .x y r X Y    Indeed, for all ( , ) ,y r Y   

( , ) : ( , ) epi ( ,.)y r x X y r x   C  

     : ( , )x X r x y    

      : ( , , )x X x y r     

   ( , ) epi .Yy r     

So, if   is a convex function then epi  is a 

convex subset of X Y   which yields that 

= epiY C  is convex, as well.                           

The next proposition gives a presentation of 

the value of the problem (P)  via its characterizing 

set C . 

Proposition 3.3. It holds 

(P) = inf { : (0 , ) }.Yr r  C  

Proof. Let us denote :={ : (0 , ) }Yr r C . 

We will prove that (P) = inf . 

Firstly, recall that  

(P) = ( ,0 ).inf Y
x X

x 


                 (3.2) 

Take arbitrarily .r  Then, there exists a net 

( )i i Ir   such that (0 , )Y i i Ir  C  and .ir r  
For 

each ,i I as (0 , )Y ir C, there is ix X  such that 

( ,0 )i Y ix r  . By (3.2), ( ,0 ) (P)i Yx  , and hence, 

(P) ir   for all i I . Letting ,ir r  we get 

(P) r  . 

Take > (P).   It follows from (3.2) that there 

is x X   satisfying > ( ,0 ) := .Yx r   Note that 

(0 , ) epi ( ,.)Y r x  C , 

which leads to { : (0 , ) }Yr r r    C . 

Briefly, we have just shown that, for all > (P)  , 

there exists r   such that that > r . 

So, (P) = inf  and we are done.                  

3.2. Lagrange dual problems 

The Lagrange dual problem and the loose 

Lagrange dual problem of (P)  are defined as 

follows, respectively,  

*

( , )

( , )

(D) [ ( , ) , ],sup inf

(D ) [ ( , ) , ].sup inf

x y X Y
y Y

x y X Y
y Y

x y y y

x y y y
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It is worth noting that *y  in the dual problem 

(D) can be considered as the Lagrange multiplier 

while the one in (D )  
also can be understood as a 

positive Lagrange multiplier. 

Proposition 3.4 (Weak duality). 

(D ) (D) (P) < .       

Proof. The first inequality follows 

immediately from the property of supremum. For 

the second inequality, taking arbitrarily x X , we 

will prove that  

(D) ( ,0 ).Yx                     (3.3) 

Indeed, for all y Y  , one has 

( , )

:= { ( , ) , }inf

( ,0 ) ,0 = ( ,0 ).

y x y X Y

Y Y Y

D x y y y

x y x



 




 



  

   

 

Hence,  

(D) = ( ,0 ).sup Yy
y Y

D x 
 

  

We have just shown that (3.3) holds for any .x X  

This leads to the fact that  

(D) ( ,0 ) = (P).inf Y
x X

x  


  

The last one comes from the fact that (P)  is 

feasible, and the proof  is complete.                        

Theorem 3.1. Assume that   is convex. Then, 

one has 

(D) = inf{ : (0 , ) }Yr r  C . 

Moreover, if (D)   then 

(D) = min{ : (0 , ) }Yr r  C . 

Proof. Denote 

:={ : (0 , ) }Yr r C . 

It follows from Proposition 3.1 that  . 

Let us divide the proof into three steps. 

  Step 1. Take arbitrarily .r We claim 

that (D) r  . As r , one has (0 , )Y r C , and 

hence, there exists a net (( , ))i i i Iy r  C  such that 

( , ) (0 , )i i Yy r r . 

For each i I , as ( , )i iy r C , there is ix X  

such that ( , ) epi ( ,.),i i iy r x  or equivalently,  

( , ).i i ir x y                        (3.4) 

Next, taking arbitrarily ,y Y   one has  

( , )

:= { ( , ) , }inf

( , ) , .

y x y X Y

i i i

D x y y y

x y y y








 



  

   

          (3.5) 

Combining (3.4) and (3.5) gives ,i iy
D r y y

      

for all i I . Proceeding to the limit, we obtain 

y
D r   (recall that ( , ) (0 , )i i Yy r r ). So, 

(D) = .sup
y

y Y

D r 
 

  

  Step 2.  Taking   such that (D)  , 

we will show that  . On the contrary, suppose 

that  . Then, it follows from this that 

(0 , )Y  C . As   is a convex function, the set C  is 

convex (see Proposition 3.2), and hence, C  is 

convex as well. So, according to the separation 

theorem (see Rudin, 1991, Theorem 3.4), there are 

y Y  ,    and    such that  

< < , , ( , ) .y y r y r      C     
 (3.6) 

 We next prove that > 0.  Fix dom (.,0 )Yx   

(it is possible as dom(.,0 )Y  ). Then we have 

( ,0 )Yx  . Set = max{ , ( ,0 )}.Yr x   Then, one 

has ( ,0 )Yr x , hence, (0 , ) epi ( ,.)Y r x C  

which, together with (3.6), yields < ,r   or 

equivalently, ( ) > 0r  . Combining this 

inequality with the fact that r   (by the definition 

of )r  we obtain > 0. Consequently, it follows 

from this and (3.6) that  

< < , , ( , ) ,y y r y r      C        (3.7) 

where 
1

:=y y


   and 
1

:= 


. 

It is clear that for any ( , ) domx y  , one has 

( , ( , )) epi ( ,.)y x y x  C , 

and hence, (3.7) entails  

< < , ( , ).y y x y      

Thus,  
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( , ) dom

( , )

< { ( , ) , }inf

= { ( , ) , }.inf

x y

x y X Y

x y y y

x y y y



  









 

   

  
 

This implies that  

( , )

< { ( , ) , } = (D)sup inf
x y X Y

y Y

x y y y  

  

    

which contradicts the assumption (D).  So, 

  as desired. 

  Step 3. Conclusion. We have just shown that:   

(i) (D) r  , r   (Step 1).  

(ii) Take > (D).  Then, there exists   

such that > (D)    (recall that (D) <  , see 

Proposition 3.4). According to Step 2, one has 

 . Briefly, for all > (D),   there is   

such that > .   

We thus get from (i) and (ii) that 

(D) = inf . 

We now assume further that (D) .   Then, 

it is obvious that (D) (D).   Replacing   by 

(D)  in Step 2, we get (D)  . This, together 

with (i), yields that (D) = min .                        

Theorem 3.2. Assume that   is convex and 

the following condition holds  

0
ˆ( ) ( ,.)  

ˆ .

C x is bounded from above on Y

for some x X

 


 

Then, (D ) = inf{ : (0 , ) }.Yr r   C  

Moreover, if (D ) ,    then 

(D ) = min{ : (0 , ) }Yr r   C . 

Proof. Let us set 

:={ : (0 , ) }Yr r C . 

It is easy to see that (D ) (D)   . So, it 

follows from Theorem 3.1 that (D ) inf .    

Next, taking   such that (D )   , we 

will show that  . Suppose, contrary to our 

claim, that  . By the same argument as in 

Step 2 of the proof of the previous theorem, there 

exist y Y   and   such that  

< < , , ( , )y y r y r      C.        (3.8) 

  We now prove that y Y 

 . To do this, take 

arbitrarily k Y . Then, we only need to show that 

, 0y k   . As 
0( )C  holds, there are x̂ X  and 

ˆ > 0M  such that ˆˆ( , )x k M   for all ,k Y  which 

yields ˆˆ( , )x k M    for all > 0.  Hence, for any 

> 0 , ˆ( , )k M C,  and then, (3.8) leads to  

ˆ< , , > 0,y k M       

or equivalently,  

ˆ
, > , > 0.

M
y k






 
    

Letting ,  one gets , 0,y k    which 

implies y Y 

 . 

  It is obvious that 

( , ( , )) epi ( ,.)y x y x  C  for all ( , ) domx y  . 

So, it follows from (3.8) that 

< < , ( , )y y x y      for any ( , ) dom ,x y   

and hence,  

( , ) dom

( , )

( , )

< { ( , ) , }inf

= { ( , ) , }inf

{ ( , ) , }sup inf

= (D ).

x y

x y X Y

x y X Y
y Y

x y y y

x y y y

x y y y



  













 



  




   

  

   
 

This contradicts our assumption (D )   . 

Consequently, we arrive at . 

The rest of the proof runs as in Step 3 of the 

proof of Theorem 3.1, one gets (D ) = inf ,   

and (D ) = min   if (D )   .                       

4. Characterization of zero duality gap 

under convex setting 

We are in the position to establish the main 

results of this paper, that is characterizing zero 

duality gap for general vector optimization problem 

(P)  in convex setting. We assume throughout this 

section that   is a convex function. 

Definition 4.1. We say that the problem (P)  

has zero duality gap if (P) = (D)   and that (P)  

has zero loose duality gap if (P) = (D )   . 
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According to Proposition 3.4, one has 

(D ) (D) (P).      So, if (P) = (D )    then 

(P) = (D),   or in the other words, if (P)  has zero 

loose duality gap then it has zero duality gap. 

It is easy to see that  

({0 } ) ({0 } ) = ({0 } ),Y Y Y      C C C (4.1) 

where the last equality follows from the fact that 

0Y   is a closed subset of .Y   Let us 

introduce the qualifying condition:  

( ) ({0 } ) = ({0 } ),Y YCQ    C C  (4.2) 

which also means that the converse inclusion of 

(4.1) holds. It is observing that the condition ( )CQ  

is a general type of the one introduced recently by 

Khanh et al. (2019) when they studied zero duality 

gap for linear programming problems. 

Theorem 4.1 (Characterization of zero duality 

gap). The following statements are equivalent to 

each other:   

(i) ( )CQ  holds.  

(ii) (P)  has zero duality gap.  

Proof.  ( ) ( )i ii Let :Y    be the 

conical projection from Y   to  (i.e., 

( , ) =y r r  for all ( , )y r Y  ). According to 

Proposition 3.3 and Theorem 3.1, one has  

 

(P) = inf { : (0 , ) }

= inf {0 }

Y

Y

r r



 

 

C

C
 

and  

 

(D) = inf{ : (0 , ) }

= inf ({0 } ) .

Y

Y

r r



 

 

C

C
 

So, if ( )CQ  holds then (P) = (D)  , which is 

nothing else but ( )ii . 

 ( ) ( )ii i Assume that ( )ii  holds, i.e., 

(P) = (D)  . The proof is completed by showing 

that ( )i  holds. According to (4.1), it is sufficient to 

show that  

({0 } ) ({0 } ).Y Y    C C   (4.3) 

For this purpose, we take 

(0 , ) ({0 } ).Y Yr   C  
We now show that 

(0 , ) ({0 } ).Y Yr   C  
Indeed, as 

(D) = inf{ : (0 , ) }Yr r  C  

(see Theorem 3.1), one has (D).r 

Consequently, by assumption that ( )ii holds, we 

obtain:  

(P) = ( ,0 ).inf Y
x X

r x 


               (4.4) 

For each n  , we set 
1

:=nr r
n

 . The last 

inequality (4.4) implies that > ( ,0 )inf x Xn Yr x  for 

any ,n   which leads to the existence of nx X  

such that > ( ,0 )n n Yr x  for any .n   Hence, 

(0 , ) ( ,.)Y n nr epi x C,  giving rise to 

(0 , ) (0 )Y n Yr   C . This, together with the fact 

that (0 , ) (0 , ),Y n Yr r  yields (0 , ) ({0 } ),Y Yr   C  

which completes the proof.                                      

Example 4.1. Let X 
 be a non-empty convex 

cone in .X  We consider the equality constrained 

linear programming problem of the form: 

(EP) inf ,

s.t. 

x

Ax b

x X









 

where *,X  ,b Y and A  being a continuous 

linear function from X  to .Y  

Let us introduce the perturbation mapping

: { }X Y      such that  

, if  and 
( , )

else.

x Ax y b x X
x y




   
 



Then, (EP) can be rewritten as ( ,0 )inf Y
x X

x
  

in the 

form of (P). The characterizing set C  now reduces 

to the set 

  , , : , 0M b Ax x r x X r       

while the dual problem (D) becomes  

*

# * *

* *

(ED) sup ,

s.t. 

.

y b

A y X

y Y
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In this case, the condition ( )CQ  collapses to

({0 } ) ({0 } ).Y YM M      
According to 

Theorem 4.1, one has inf (EP) sup(ED)  if and 

only if ({0 } ) ({0 } ).Y YM M      

Theorem 4.2 (Characterization of zero loose 

duality gap). Assume that the condition 0( )C  in 

Theorem 3.2 is fulfilled. Then, the following 

statements are equivalent to each other:   

(i) ( )CQ holds. 

(ii) (P) has zero loose duality gap. 

Proof. Similar to the proof of Theorem 4.1, 

using Theorem 3.2 instead of Theorem 3.1.            

We now consider the new qualifying 

condition  

( ) ({0 } ) = ({0 } ).Y YCQR    C C  

We say that C  is closed regarding the set 

0Y   if ( )CQR  holds. It is worth observing that 

if ( )CQR  holds, then ( )CQR  does, too. 

The next corollary is an immediate 

consequence of the above theorems. 

Corollary 4.1 Assume that ( )CQR  holds. 

Then, it holds:   

(i) (P) has zero duality gap. 

(ii)  If 0( )C  in Theorem 3.2 holds then (P)  

has zero loose duality gap.  

Proof. As ( )CQR  holds, one has 

({0 } ) = ({0 } ) = ({0 } ),Y Y Y     C C C  

which means that ( )CQ  holds. The conclusion now 

follows from Theorems 4.1 and 4.2.                        

5. Application: Zero duality gap for 

composite optimization problems 

In this last section, we apply the general 

results established in the previous sections to 

derive zero duality gap for the composite 

optimization problem. We are concerned with the 

composite optimization problems, of the form (Boţ, 

2010, Boţ et al., 2005, Dinh & Mo, 2012) 

(CP) [ ( ) ( )( )],inf
x X

f x g H x


  

where ,X Z  are locally convex Hausdorff 

topological vector spaces, Z
is non-empty convex 

cone in ,Z : ,f X  : ,g Z   and 

:H X Z   are proper mappings such that 
1dom (dom )f H g   and we adopt the 

convention ( ) =Zg   . 

In the rest of this section, we will establish 

various characterizations of zero duality gap for the 

problem (CP) due to different choices of the 

perturbation function   introduced in Section 1. 

5.1. The first way of transforming 

Consider = ,Y Z = ,Y Z   and 1 : X Z    

defined by  

1( , ) = ( ) ( ( ) ).x z f x g H x z    
        (5.1) 

It is easy to see that 

1

1

dom (.,0 ) = dom( )

= dom (dom ),

Z f g H

f H g







 

and hence, by above assumption, 1dom (.,0 ) .Z   

It is worth noting that when taking 
1= ,  the 

problem (P) collapses to the problem (CP). In this 

case, characterizations of zero duality gap for the 

problem (P) are also the ones for the problem (CP). 

The next lemma gives us specific forms of the 

characterization set C  and dual problems (D)  and 

(D )  in this setting. 

Lemma 5.1. With =Y Z , =Y Z  , and 1=   

given by (5.1), the set C , the problems (D)  and 

(D )  become, respectively,  

1 := im( , ) hyp( ),H f g C             (5.2) 

and 

1

dom

(C ) { ( ) [ ( ) , ( ) ]},sup inf
x X

z g

D g z f x z H x
  

 


    

1

dom

(C ) { ( ) [ ( ) , ( ) ]},sup inf
x X

z g Z

D g z f x z H x
  



  
 



      

where  im( , ) ( ( ), ( )) : dom dom .H f H x f x x H f    

Proof. See Appendix A.                                 

We now establish the first characterization of 

zero duality gap for the problem (CP) and the one 

of zero loose duality gap for the problem (CP). 
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Corollary 5.1 (Characterization of zero 

duality gap 1). Assume that f  is convex, that g  is 

convex and Y
-nondecreasing, and that H  is a Y

-convex mapping. Then, the following statements 

are equivalent:   

(i) 1 1({0 } ) = ({0 } ),Z Z   C C  

(ii) 1(C ) = (C )P D  .  

Proof. The convexity of 1  implies directly 

from the above assumption. Then, the conclusion 

follows from Theorem 4.1 and Lemma 5.1.            

Corollary 5.2 (Characterization of zero loose 

duality gap 1). Assume that the assumption of 

Corollary 5.1 holds. Assume further that the 

following condition holds  

1
ˆ ˆ( ) : ( ( ) )

.

C x X g H x Z is bounded 

from above

  

Then, the following statements are equivalent:   

(i)  1 1({0 } ) = ({0 } )Z Z   C C ,  

(ii)  1(C ) = (C )P D   .  

Proof. It follows from Theorem 4.2 and 

Lemma 5.1.                                                              

5.2. The second way of transforming 

We now take = ,Y X Z ={0 } ,XY Z   and 

the perturbation 2 : X X Z     defined by  

2 ( , , ) = ( ) ( ( ) ).x x z f x x g H x z           
(5.3) 

It is easy to check that 2dom (.,0 ,0 )X Z  . 

It is worth observing that in this case, taking 

2= ,  the problem (P) collapses to the       

problem (CP). 

The formulas of characterization set C  and 

dual problems (D)  and (D )  in this the case are 

given by the following lemma. 

Lemma 5.2. With =Y X Z , ={0 }XY Z   

and 2=   given by (5.3), the set C  becomes  

2 := gr(0 , ) gr( ,0) {0 } hyp( ),Z Xf H g    C
 
(5.4) 

while the problems (D)  and (D )  become, respectively,  

2

( , ) dom dom

(C ) { ( ) ( ) ( ) ( )},sup
x z f g

D f x g z z H x
      

   
 

     

2

dom

dom

(C ) { ( ) ( ) ( ) ( )}.sup
x f

z g Y

D f x g z z H x
      


 

  
 



     

Proof. See Appendix B.                                  

By combining Lemma 5.2 to Theorem 4.1 and 

to Theorem 4.2, respectively, we get directly the 

consequences as follows: 

Corollary 5.3 (Characterization of zero 

duality gap 2). Assume all the assumption of 

Corollary 5.1. Then, the following statements are 

equivalent:   

(i) 
2 2({0 } {0 }) = ({0 } {0 })X Z X Z     C C ,  

(ii)  2(C ) = (C )P D  .  

Corollary 5.4 (Characterization of zero loose 

duality gap 2). Assume all the assumption of 

Corollary 5.1. Assume further that the condition 

1( )C  in Corollary 5.2 holds Then, the following 

statements are equivalent:   

(i) 
2 2({0 } {0 }) = ({0 } {0 })X Z X Z     C C ,  

(ii)  2(C ) = (C )P D   .  

References 

Anderson, E.J. (1983). A review of duality theory 

for linear programming over topological 

vector spaces. Journal of Mathematical 

Analysis and Applications, 97(2), 380-392. 

https://doi.org/10.1016/0022-247X(83)90204-4. 

Boţ, R. I. (2009). Conjugate duality in convex 

optimization (Vol. 637). Springer Science & 

Business Media. 

Boţ, R. I., Hodrea, I. B., & Wanka, G. (2005, 

August). Composed convex programming: 

duality and Farkas-type results. In Proceeding 

of the International Conference In Memoriam 

Gyula Farkas, 23-26. 

Feizollahi, M. J., Ahmed, S., & Sun, A. (2017). 

Exact augmented Lagrangian duality for 

mixed integer linear 

programming. Mathematical 

Programming, 161, 365-387. 

https://doi.org/10.1007/s10107-016-1012-8. 

Huang, X. X., & Yang, X. Q. (2003). A unified 

augmented Lagrangian approach to duality 

and exact penalization. Mathematics of 

Operations Research, 28(3), 533-552. 

https://doi.org/10.1287/moor.28.3.533.16395. 

https://doi.org/10.1016/0022-247X(83)90204-4
https://doi.org/10.1007/s10107-016-1012-8
https://doi.org/10.1287/moor.28.3.533.16395


                     Dong Thap University Journal of Science, Vol. 11, No. 5, 2022, 09-18 

 

 

17 

Huang, X. X., & Yang, X. Q. (2005). Further study 

on augmented Lagrangian duality 

theory. Journal of Global Optimization, 31(2), 

193-210. https://doi.org/10.1007/s10898-004-

5695-7. 

Jeyakumar, V., & Li, G. Y. (2009). Stable zero 

duality gaps in convex programming: 

complete dual characterisations with 

applications to semidefinite 

programs. Journal of mathematical analysis 

and applications, 360(1), 156-167. 

https://doi.org/10.1016/j.jmaa.2009.06.043. 

Jeyakumar, V., & Li, G. Y. (2009). New dual 

constraint qualifications characterizing zero 

duality gaps of convex programs and 

semidefinite programs. Nonlinear Analysis: 

Theory, Methods & Applications, 71(12), 

e2239-e2249. 

https://doi.org/10.1016/j.na.2009.05.009. 

Jeyakumar, V., & Wolkowicz, H. (1990). Zero 

duality gaps in infinite-dimensional 

programming. Journal of Optimization Theory 

and Applications, 67, 87-108. 

https://doi.org/10.1007/BF00939737. 

Li, D. (1995). Zero duality gap for a class of 

nonconvex optimization problems. Journal of 

Optimization Theory and Applications, 85, 

309-324. 

https://doi.org/10.1007/BF02192229. 

Li, D. (1999). Zero duality gap in integer 

programming: P-norm surrogate constraint 

method. Operations Research Letters, 25(2), 

89-96. https://doi.org/10.1016/S0167-

6377(99)00039-5. 

Long, F., & Zeng, B. (2021). The zero duality gap 

property for an optimal control problem 

governed by a multivalued hemivariational 

inequality. Applied Mathematics & 

Optimization, 84, 2629-2643. 

https://doi.org/10.1007/s00245-020-09721-z.   

Nguyen, D., Dang, H. L., Tran, H. M., & Yao, J. C. 

(2020). Approximate Farkas lemmas for vector 

systems with applications to convex vector 

optimization problems. Journal of Nonlinear 

and Convex Analysis, 21(5), 1225-1246. 

Nguyen, D. & Tran, H. M. (2012). Qualification 

conditions and Farkas-type results for systems 

involving composite functions. Vietnam 

Journal of Math, 40(4), 407-437. 

Pham,  D. K., Tran, H. M., & Tran, T. T. T.. 

(2019). Necessary and sufficient conditions 

for qualitative properties of infinite 

dimensional linear programming problems. 

Numerical Functional Analysis and 

Optimization, 40(8), 924-943. 

https://doi.org/10.1080/01630563.2019.1566244. 

Rubinov, A. M., Huang, X. X., & Yang, X. Q. 

(2002). The zero duality gap property and 

lower semicontinuity of the perturbation 

function. Mathematics of Operations 

Research, 27(4), 775-791. 

https://doi.org/10.1287/moor.27.4.775.295. 

Rudin, W. (1991). Functional Analysis (2nd 

Edition). New York: McGraw-Hill. 

Yang, X. Q., & Huang, X. X. (2001). A 

nonlinear Lagrangian approach to constrained 

optimization problems. SIAM Journal on 

Optimization, 11(4), 1119-1144. 

https://doi.org/10.1137/S1052623400371806. 

Appendix 

Proof of Lemma 5.1.  

( )i Prove that 1=C C . Take ( , )z r C . Then, 

there exists x X  such that 1( , ) epi ( ,.),z r x  

which means 1( , ) = ( ) ( ( ) ),r x z f x g H x z    or 

equivalently, ( ) ( ( ) ).f x r g H x z     So, 

( ( ) , ( ) ) hyp( ),H x z f x r g     and hence, 

( , ) = ( ( ), ( )) ( ( ) , ( ) )

( ( ), ( )) hyp( ).

z r H x f x H x z f x r

H x f x g

  

  
 

 Moreover, the inequality 

( ) ( ( ) )r f x g H x z    also leads to 

dom dom = dom( , ).x f H H f   So, one gets

( , ) im( , ) hyp( )z r H f g   . 

Take 1( , ) .z r C  Then, there are 

dom( , ) = dom domx H f f H   and ( , ) hyp( )u g    

such that ( , ) = ( ( ), ( )) ( , )z r H x f x u  , which means 

= ( ) and = ( ) .z H x u r f x          (5.5) 

As ( , ) hyp( )u g   , one has ( )g u   , or 

equivalently, ( )g u  , and hence, by (5.5), 

1( ) ( ) = ( ) ( ( ) ) = ( , ).r f x g u f x g H x z x z     

This yields 1 1( , ) epi ( ,.)z r x C  and we are done. 
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( )ii  Prove that 1sup(D) = sup(C )D . By the 

definition of the Lagrange dual problem (D) (see 

Subsection 3.2), one has sup(D) = sup
z Z z

D  
 

where  

1
( , )

:= [ ( , ) , ]inf
z x z X Z

D x z z z 


 

    

(recall that, at this time, =Y Z  and 
1=  ). 

For each ,z Z   according to (5.1), we have  

( , )

( , )

= [ ( ) ( ( ) ) , ]inf

= [ ( ) ( ) , ( ) ]inf

= [ , ( )] [ ( ) , ( ) ]sup inf

= ( ) [ ( ) , ( ) ].inf

z x z X Z

x u X Z

x Xu Z

x X

D f x g H x z z z

f x g u z H x u

z u g u f x z H x

g z f x z H x




 



 

 



  



    

    

     

    

 

So, we get 

dom

1

sup(D) = { ( ) [ ( ) , ( ) ]}sup inf

= { ( ) [ ( ) , ( ) ]}sup inf

= sup(C )

x X
z Z

x X
z g

g z f x z H x

g z f x z H x

D

  

 

  

 

   

   

 

where the third equality follows from the fact that 

( ) =g u    whenever dom .u g   

( )iii Similar arguments apply to the problem 

(D ) to obtain 1sup(D ) = sup(C ),D   and the proof 

is complete.                                                              

Proof of Lemma 5.2.  

Prove that 2= .C C  Take ( , , )x z r C.  Then, 

there is x X  such that 2( , , , ) epi ( ,.,.)x x z r x  , 

i.e.,  

2( , , ) = ( ) ( ( ) ).r x x z f x x g H x z     
   

(5.6) 

On the other hand, we can rewrite ( , , )x z r  as  

( , , ) = ( ,0 , ( )) ( , ( ),0)

               (0 , ( ) , ( ) ).        (5.7)

Z

X

x z r x x f x x x H x

H x z f x x r

     

   
 

 It follows from (5.6) that 

dom = dom(0 , ),Zx x f f 

dom = dom( ,0),x H H   

and  

( ) ( ( ) ).f x x z g H x z      

This, together with (5.6), yields 

( , , ) gr(0 , ) gr( ,0) {0 } hyp( ).Z Xx z r f H g      

Conversely, take 2( , , ) .x z r C  Then, there are 

dom(0 , ) = dom ,Zu f f dom( ,0) = dom ,v H H   

and 

( , ) hyp( )w g    

 such that 

( , , ) = ( ,0 , ( )) ( , ( ),0) (0 , , ),Z Xx z r u f u v H v w      

and hence 

= , = ( ) and = ( ) .x u v z H v w r f u     (5.8) 

As ( , ) hyp( ),w g    we have ( ).g u  

Combining this with (5.8) ( )g u  , we get 

2

( ) ( ) = ( ) ( ( ) )

= ( , , ).

r f u g w f v x g H v z

u x z

    


 

Consequently, 2 2( , , ) epi ( ,.)x z r u  C  and we 

are done. 

The proof of equalities 2sup(D) = sup(C )D  

and 2sup(D) = sup(C )D is similar as in that of 

Lemma 5.1.                                                              

 


