DRINFEL'D ASSOCIATOR AND RELATIONS OF SOME SPECIAL FUNCTIONS

Bui Van Chien
University of Sciences, Hue University, Vietnam
Email: bvchien@hueuni.edu.vn
Article history

Received: 07/5/2022; Received in revised form: 08/7/2022; Accepted: 27/7/2022

Abstract

We observe the differential equation $d G(z) / d z=\left(x_{0} / z+x_{1} /(1-z)\right) G(z)$ in the space of power series of noncommutative indeterminates x_{0}, x_{1}, where the coefficients of $G(z)$ are holomorphic functions on the simply connected domain $\mathbb{C} \backslash[(-\infty, 0) \cup(1,+\infty)]$. Researches on this equation in some conditions turn out different solutions which admit Drinfel'd associator as a bridge. In this paper, we review representations of these solutions by generating series of some special functions such as multiple harmonic sums, multiple polylogarithms and polyzetas. Thereby, relations in explicit forms or asymptotic expansions of these special functions from the bridge equations are deduced by identifying local coordinates.

Keywords: Drinfel'd associator, multiple harmonic sums, multiple polylogarithms, polyzetas, special functions.

LIÊN HỢP DRINFEL'D VÀ QUAN HỆ CỦA MỘT SỐ HÀM ĐẶC BIỆT

Bùi Văn Chiến

Truờng Đại học Khoa học, Đại học Huế, Việt Nam

Email: bvchien@hueuni.edu.vn

Lịch sử bài báo

Ngày nhận: 07/5/2022; Ngày nhận chỉh sủa: 08/7/2022; Ngày duyệt đăng: 27/7/2022

Tóm tắt

Chúng tôi quan sát phuơng trình vi phân $d G(z) / d z=\left(x_{0} / z+x_{1} /(1-z)\right) G(z)$ trong không gian các chuỗi lũy thừa của các phần tủ̉ không giao hoán x_{0}, x_{1}, trong đó các hệ số của $G(z)$ là các hàm chỉnh hình trên miền đơn liên $\mathbb{C} \backslash[(-\infty, 0) \cup(1,+\infty)]$. Nhũng nghiên cúu xung quanh phuơng trình này trong một số điều kiện khác nhau cho ta nhũng nghiệm khác nhau và liên hợp Drinfiel'd là một cầu nối giũa chúng. Trong bài báo này, chúng tôi tổng quan lại việc biểu diễn các truờng hợp nghiệm thông qua các hàm sinh của các hàm đặt biệt nhu tổng điều hòa bội, hàm polylogarit bội và chuỗi zeta bội. Tù các phuơng trình cầu nối, chúng tôi rủt ra được các quan hệ duới dạng tuờng minh hoặc khai triển tiệm cận của các các hàm đạc biệt này bằng cách đồng nhất các tọa độ địa phuơng.

Từ khóa: Liên hợp Drinfel'd, tổng điều hòa bội, hàm polylogarit bội, chuỗi zeta bội, tổng điều hòa bội.

[^0]
1. Introduction

Let $\quad \mathbb{C}_{*}^{n}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}\right.$ for $\left.i \neq j\right\}$ and $\mathcal{H}\left(\mathbb{C}_{*}^{n}\right)$ denotes the ring of holomorphic functions over the universal covering of \mathbb{C}_{*}^{n}, denoted by \mathbb{C}_{*}^{n}. Using $\mathcal{T}_{n}:=\left\{t_{i j}\right\}_{1 \leq i<j \leq n}$ as an alphabet, Knizhnik \& Zamolodchikov (1984) defined a noncommutative first order differential equation acting in the ring $\mathcal{H}\left(\mathbb{C}_{*}^{n}\right)\left\langle\left\langle\mathcal{T}_{n}\right\rangle\right\rangle$,

$$
\begin{equation*}
d G(z)=\Omega_{n}(z) G(z), \tag{1.1}
\end{equation*}
$$

where $\Omega_{n}:=\sum_{1 \leq i<j \leq n} \frac{t_{i j}}{2 i \pi} d \log \left(z_{i}-z_{j}\right)$.
For example, with $n=2$, one has $\mathcal{T}_{2}=\left\{t_{12}\right\}$ and a solution of the equation $d G(z)=\Omega_{2} G(z)$, where $\Omega_{2}=\frac{t_{12}}{2 i \pi} d \log \left(z_{1}-z_{2}\right)$, is

$$
\begin{aligned}
G\left(z_{1}, z_{2}\right) & =\exp \left(\frac{t_{12}}{2 i \pi} \log \left(z_{1}-z_{2}\right)\right) \\
& =\left(z_{1}-z_{2}\right)^{t_{12} / 2 i \pi} \in \mathcal{H}\left(\mathbb{C}_{*}^{2}\right)\left\langle\left\langle\mathcal{T}_{2}\right\rangle\right\rangle .
\end{aligned}
$$

In the case $n=3$, the equation

$$
\begin{equation*}
d G(z)=\frac{1}{2 i \pi}\left(t_{12} \frac{d z}{z}-t_{23} \frac{d z}{1-z}\right) G(z) \tag{1.2}
\end{equation*}
$$

is appplied in the ring $\mathcal{H}(\mathbb{D})\left\langle\left\langle t_{12}, t_{23}\right\rangle\right\rangle$, where

$$
\begin{equation*}
\mathbb{D}:=\mathbb{C} \backslash[(-\infty, 0) \cup(1,+\infty)] . \tag{1.3}
\end{equation*}
$$

By taking $x_{0}:=\frac{t_{13}}{2 i \pi}, x_{1}:=\frac{-t_{23}}{2 i \pi}$, equation (1.2) can be rewritten as follows

$$
\begin{equation*}
\frac{d G(z)}{d z}=\left(\frac{x_{0}}{z}+\frac{x_{1}}{1-z}\right) G(z), \tag{1.4}
\end{equation*}
$$

and more shortly $d G(z)=\left(\omega_{0}(z) x_{0}+\omega_{1}(z) x_{1}\right) G(z)$ by using the two differential forms

$$
\begin{equation*}
\omega_{0}(z):=\frac{d z}{z} \text { and } \omega_{1}(z):=\frac{d z}{1-z} . \tag{1.5}
\end{equation*}
$$

The resolution of (1.4) uses the so-called
Chen series, of ω_{0} and ω_{1} along a path $z_{0} \rightsquigarrow z$ on \mathcal{D}, defined by (Cartier, 1987):

$$
\begin{equation*}
C_{z_{0} w z}:=\sum_{w \in X^{X}} \alpha_{z_{0}}^{z}(w) w \in \mathcal{H}(\mathbb{D})\langle\langle X\rangle\rangle, \tag{1.6}
\end{equation*}
$$

where X^{*} denotes the free monoid generated by the alphabet X (equipping the empty word as the neutral element) and, for a subdivision $\left(z_{0}, z_{1} \ldots, z_{k}, z\right)$ of $z_{0} \rightsquigarrow z$ and the coefficient $\alpha_{z_{0}}^{z}(w) \in \mathcal{H}(\mathbb{D}) \quad$ is defined, for any $w=x_{i_{1}} \cdots x_{i_{k}} \in X^{*}$, as follows

$$
\begin{aligned}
& \alpha_{z_{0}}^{z}(w)=\int_{z_{0}}^{z} \omega_{i_{1}}\left(z_{1}\right) \ldots \int_{z_{0}}^{z_{k-1}} \omega_{i_{k}}\left(z_{k}\right), \\
& \alpha_{z_{0}}^{z}\left(1_{X^{*}}\right)=1_{\mathcal{D}} .
\end{aligned}
$$

The series $C_{z_{0} \leadsto z}$ is group-like (Ree, 1958), which implies that there exists a primitive series $L_{z_{0} w z}$ such that

$$
\begin{equation*}
e^{L_{00 m z}}=C_{z_{0} \cdots z} . \tag{1.7}
\end{equation*}
$$

In (Drinfel'd, 1990), Drinfel'd is essentially interested in solutions of (1.4) over the interval $(0 ; 1)$ and, using the involution $z \mapsto 1-z$, he stated (1.4) admits a unique solution G_{0} (resp. G_{1}) satisfying asymptotic forms

$$
\begin{equation*}
G_{0}(z)_{z \rightarrow 0} z^{x_{0}} \text { and } G_{1}(z)_{z \rightarrow 1}(1-z)^{-x_{1}} . \tag{1.8}
\end{equation*}
$$

Moreover, G_{0} and G_{1} are group-like series then there is a unique group-like series $\Phi_{K Z} \in \mathbb{R}\langle\langle X\rangle\rangle, \quad$ Drinfel'd series (so-called Drinfel'd associator), such that

$$
\begin{equation*}
G_{0}=G_{1} \Phi_{K Z} . \tag{1.9}
\end{equation*}
$$

After that, via a regularization based on representation of the chord diagram algebras Thang \& Murakami (1996) expressed the divergent coefficients of $\Phi_{K Z}$ as linear combinations of Multiple-Zeta-Value (or polyzetas) defined for each composition $\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{N}_{\geq 1}^{r}, s_{1} \geq 2$, as follows

$$
\begin{equation*}
\zeta\left(s_{1}, \ldots, s_{r}\right):=\sum_{n_{1}>\ldots>n_{r} \geq 1} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} . \tag{1.10}
\end{equation*}
$$

In other words, these polyzetas can be reduced by the limit at $z=1$ of multiple polylogarithms or at $N \rightarrow \infty$ of multiple harmonic sums, respectively defined on each multi-index $\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{N}_{\geq 1}^{r}, r \geq 1$, and $z \in \mathbb{C},|z|<1, n \in \mathbb{N}$, as follows

$$
\begin{align*}
\mathrm{Li}_{s_{1}, \ldots, s_{r}}(z) & :=\sum_{n_{1}>\ldots>n_{r} \geq 1} \frac{z^{n_{1}}}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}}, \tag{1.11}\\
\mathrm{H}_{s_{1}, \ldots, s_{r}}(n) & :=\sum_{n_{1}>\ldots>n_{r} \geq 1}^{n} \frac{1}{n_{1}^{s_{1}} \ldots n_{r}^{s_{r}}} . \tag{1.12}
\end{align*}
$$

Moreover, the multiple harmonic sums can be viewed as coefficients of generating series of the multiple polylogarithm for each multi-index

$$
\begin{equation*}
(1-z)^{-1} \mathrm{Li}_{s_{1}, \ldots, s_{r}}(z)=\sum_{n \geq 1} \mathrm{H}_{s_{1}, \ldots, s_{r}}(n) z^{n} . \tag{1.13}
\end{equation*}
$$

In this work, we review a method to construct relations of the special functions by following equation (1.9). The generating series of the special functions are group-like series to review simultaneously the essential steps to furnish G_{0} and $\Phi_{K Z}$ which follows related equations in asymptotic expansion forms and then an equation bridging the algebraic structures of converging polyzetas.

2. Algebras of shuffle and quasi-shuffle products

The above special functions are compatible with shuffle and quasi-shuffle structures. In order to represent these properties more clearly, we correspond each multi-index $\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{N}_{\geq 1}^{r}, r \geq 1$ to words generated by the two alphabets $X=\left\{x_{0}, x_{1}\right\}$ and $Y=\left\{y_{k}\right\}_{k \geq 1}$ as follows

$$
\begin{align*}
\left(s_{1}, \ldots, s_{r}\right) & \leftrightarrow x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{r}-1} x_{1} \in X^{*} x_{1} \\
& \stackrel{\pi_{X}}{\rightleftharpoons} y_{\pi_{Y}} \ldots y_{s_{r}} \in Y^{*} \tag{2.1}
\end{align*}
$$

Where X^{*} and Y^{*} respectively denote the free monoids of words generated by the alphabets X and Y with the empty words $1_{X^{*}}$ and $1_{Y^{*}}$ (sometime use 1 in common) as the neutral elements. This section reviews two structures of shuffle and quasishuffle algebras compatible with the special functions introduced above.

2.1. Bi-algebras in duality

By taking formal sums of words, we can extend the monoids X^{*} and Y^{*} to the \mathbb{Q}-modules, denoted by $\mathbb{Q}\langle X\rangle$ and $\mathbb{Q}\langle Y\rangle$, which become bialgebras with respect to the following product and co-product:

1. The associative unital concatenation, denoted by conc, and its co-law which is denoted by $\Delta_{\text {conc }}$ and defined for any w as follows

$$
\begin{equation*}
\Delta_{\text {conc }}(w)=\sum_{u v=w} u \otimes v \tag{2.2}
\end{equation*}
$$

2. The associative commutative and unital shuffle product defined, for any $x, y \in X$ and $u, v \in X^{*}$, by the recursion

$$
\begin{align*}
& u ш 1_{X^{*}}=1_{X^{*}} Ш u=u, \\
& x u ш y v=x(u ш y v)+y(x u ш v), \tag{2.3}
\end{align*}
$$

or equivalently, by its coproduct (which is a morphism for concatenations) defined, for each letter $x \in X$, as follows

$$
\begin{equation*}
\Delta_{\mathbb{U}} x=1_{X^{*}} \otimes x+x \otimes 1_{X^{*}} \tag{2.4}
\end{equation*}
$$

According to the Radford theorem (Radford, 1979), Lyn X forms a pure transcendence basis of the \mathbb{Q}-shuffle algebras, graded in length of word, $\left(\mathbb{Q}\langle X\rangle, \boldsymbol{\omega}, 1_{X^{*}}\right)$ (Reutenauer, 1993). Similarly, the \mathbb{Q}-module $\mathbb{Q}\langle Y\rangle$ is also equipped with the associative commutative and unital stuffle product defined, for $u, v, w \in Y^{*}$ and $y_{i}, y_{j} \in Y$, by

$$
\begin{aligned}
w \not 1_{Y^{*}} & =1_{Y^{*}} \text { Ж } w=w, \\
y_{i} u \not y_{j} v & =y_{i}\left(u \text { ж } y_{j} v\right)+y_{j}\left(y_{i} u \nsim v\right) \\
& +y_{i+j}(u \nsim v) .
\end{aligned}
$$

It can be dualized according to $y_{k} \in Y$

$$
\Delta\left(y_{k}\right):=y_{k} \otimes 1_{Y^{*}}+1_{Y^{*}} \otimes y_{k}+\sum_{i+j=k} y_{i} \otimes y_{j}
$$

which is also a conc-morphism and the \mathbb{Q}-stuffle algebra $\left(\mathbb{Q}\langle Y\rangle, \mathcal{W}, 1_{Y^{*}}\right)$
admits the set of Lyndon words, denoted by Lyn Y, as a pure transcendence basis (Hoang, 2013b; Chien et al., 2015). This algebra is graded in weight defined by taking sum of all index of letters in a word. For example, the weight of the word $w=y_{s_{1}} \ldots y_{s_{r}}$ is $s_{1}+\ldots+s_{r}$.

Note that, the stuffle product defined here just acts on the monoid generated by alphabet Y but the shuffle product can be applied for any alphabet.

We will use \mathcal{X} as a general alphabet used for shuffle product and A as a field extension of \mathbb{Q}.

Definition 2.1. Let $A\langle\langle\mathcal{X}\rangle\rangle, S \in A\langle\langle Y\rangle\rangle$ be the sets of formal series extended from $A\langle X\rangle$ and $A\langle Y\rangle$ respectively. Then
i. S is said to be a group-like series if and only if $\left\langle S 1_{\mathcal{X}^{*}}=1\right.$ and $\Delta_{ш} S=S \otimes S \quad$ (resp. $\Delta_{\nless} S=S \otimes S$).
ii. S is said to be a primitive series if and only if $\Delta_{\Psi} S=1_{\mathcal{X}^{*}} \otimes S+S \otimes 1_{\mathcal{X}^{\prime}}\left(\right.$ resp. $\Delta_{\chi^{\prime}} S=1_{\gamma^{\prime}} \otimes S+S \otimes 1_{\gamma^{\prime}}$).

The Lie bracket in an algebra is defined for some algebra with the product (\cdot) as usual

$$
[x ; y]=x \cdot y-y \cdot x .
$$

The following results are standard facts from works by Ree (Ree, 1958) (see also (Chien et al., 2015; Reutenauer, 1993).

Proposition 2.1.

i. The Lie bracket of two primitive elements is primitive.
ii. Let $S \in A\langle Y\rangle$ (resp. $A\langle\langle\mathcal{X}\rangle\rangle$). Then S is primitive, for Δ_{*} (resp. $\Delta_{\text {conc }}$ and Δ_{Ψ}), if and only if, for any $u, v \in Y^{*} Y$ (resp. $\mathcal{X}^{*} \mathcal{X}$), we get $\langle S \mid u ж v\rangle=0$ (resp. $\langle S \mid u v\rangle=0$ and $\langle S \mid u ш v\rangle=0$).

Proposition 2.2. Let $S \in A\langle\langle Y\rangle\rangle$ (resp. $A\langle\langle\mathcal{X}\rangle\rangle$). Then the following assertions are equivalent
i. S is a ж-character (resp. conc and $ш$ character).
ii. S is group-like, for Δ_{\nrightarrow} (resp. $\Delta_{\text {conc }}$ and Δ_{\amalg}).
iii. $\log S$ is primitive, for $\Delta_{Ж}\left(\right.$ resp. $\Delta_{\text {conc }}$ and $\left.\Delta_{\amalg}\right)$. Corollary 2.1. Let $S \in A\langle\langle Y\rangle\rangle$ (resp. $A\langle\langle\mathcal{X}\rangle\rangle$). Then the following assertions are equivalent
i. S an infinitesimal $\boldsymbol{*}$-character (resp. conc and $\boldsymbol{\omega}$-character).
ii. S is primitive, for $\Delta_{\text {ж }}$ (resp. $\Delta_{\text {conc }}$ and $\Delta_{\text {ш }}$.

2.2. Factorization in bi-algebras

Due to Cartier-Quillin-Milnor-Moore (Cartier, 1987) theorem (CQMM theorem), it is well known that the enveloping algebra $\mathcal{U}\left(\mathcal{L i e}_{\mathbb{Q}}\langle\mathcal{X}\rangle\right)$ is
isomorphic to the (connected, graded and cocommutative) bialgebra $\mathcal{H}_{\Perp}(\mathcal{X})=\left(A\langle\mathcal{X}\rangle\right.$, conc, $\left.1_{\mathcal{X}^{\prime}}, \Delta_{\Perp}, e\right)$, where the counit being here $e(P)=\langle P \mid 1\rangle$. Moreover, this algebra is graded and admits a Poincaré-BirkhoffWitt basis (Reutenauer, 1993) $\left\{P_{w}\right\}_{w \in \mathcal{\chi}^{*}}$ which is expanded from the homogeneous basis $\left\{P_{l}\right\}_{l \in \mathrm{Lyn} X}$ of the Lie algebra of concatenation product, denoted by $\mathcal{L i e}_{A}\langle\mathcal{X}\rangle$. Its graded dual basis is denoted by $\left\{S_{w}\right\}_{w \in \mathcal{X}}$ admitting the pure transcendence basis $\left\{S_{l}\right\}_{l \in \mathrm{Lynx}}$ of the A-shuffle algebra.

In the case when A is a \mathbb{Q}-algebra, we also have the following factorization of the diagonal series, (Reutenauer, 1993) (here all tensor products are over A)

$$
\begin{equation*}
D_{\mathcal{X}}:=\sum_{w \in \mathcal{X}^{*}} w \otimes w=\prod_{l \in \operatorname{LynX}}^{\mathcal{V}} e^{s_{\ell} \otimes P_{l}} \tag{2.5}
\end{equation*}
$$

and (still in the case A is a \mathbb{Q}-algebra) dual bases of homogeneous polynomials $\left\{P_{w}\right\}_{w \in \mathcal{X}}{ }^{*}$ and $\left\{S_{w}\right\}_{w \in \mathcal{X}}$ can be constructed recursively as follows

$$
\left\{\begin{array}{l}
P_{x}=x, \text { for } x \in \mathcal{X}, \tag{2.6}\\
P_{l}=\left[P_{l_{1}}, P_{l_{2}}\right],(l)=\left(l_{1}, l_{2}\right), \\
P_{w}=P_{l_{1}}^{i} \ldots P_{l_{k}}^{i_{k}}, L F(w)=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}},
\end{array}\right.
$$

where $L F(w)$ denotes the Lyndon factorization of the word w which is rewritten a word as a product of decreasing Lyndon words.

$$
\left\{\begin{array}{l}
S_{x}=x, x \in \mathcal{X}, \tag{2.7}\\
S_{l}=y S_{l^{\prime}}, l=y l^{\prime} \in \operatorname{Lyn} \mathcal{X}-\mathcal{X} \\
S_{w}=\frac{S_{l_{1}}^{\omega i_{1}} w \ldots w S_{l_{k}}^{\omega i_{k}}}{i_{1}!\ldots i_{k}!}, L F(w)=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}} .
\end{array}\right.
$$

The graded dual of $\mathcal{H}_{\amalg}(\mathcal{X})$ is

$$
\mathcal{H}_{\mathbb{~}}^{\vee}(\mathcal{X})=\left(A\langle\mathcal{X}\rangle, ш, 1_{\mathcal{X}^{*}}, \Delta_{\text {conc }}, \epsilon\right) .
$$

We get another connected, graded and cocommutative bialgebra which, in case A is a \mathbb{Q} algebra, is isomorphic to the enveloping algebra of the Lie algebra of its primitive elements,

$$
\begin{align*}
\mathcal{H}_{\varkappa}(Y) & =\left(A\langle Y\rangle, \operatorname{conc}, 1_{Y^{*}}, \Delta_{*}, \epsilon\right) \\
& \cong \mathcal{U}\left(\operatorname{Prim}\left(\mathcal{H}_{\varkappa}(Y)\right)\right), \tag{2.8}
\end{align*}
$$

where

$$
\operatorname{Prim}\left(\mathcal{H}_{\varkappa}(Y)\right)=\operatorname{Im}\left(\pi_{1}\right)=\operatorname{span}_{A}\left\{\pi_{1}(w) \mid w \in Y^{*}\right\}
$$

and π_{1} is defined, for any $w \in Y^{*}$, by (Hoang, 2013b); Bui et al. (2015).

$$
\pi_{1}(w)=w+\sum_{k=2}^{(w)} \frac{(-1)^{k-1}}{k} \sum_{u_{1}, \ldots, u_{k} \in Y^{+}}\left\langle w \mid u_{1} ж \ldots \ldots u_{k}\right\rangle u_{1} \ldots u_{k} \cdot(2.8)
$$

Now, let $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ be the linear basis, expanded by decreasing Poincaré-Birkhoff-Witt (PBW for short) after any basis $\left\{\Pi_{l}\right\}_{l \in \operatorname{Lyn} Y}$ of $\operatorname{Prim}\left(\mathcal{H}_{\kappa}(Y)\right)$ homogeneous in weight, and let $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ be its dual basis which contains the pure transcendence basis $\left\{\Sigma_{l}\right\}_{l \in \mathrm{Lyn} Y}$ of the A-stuffle algebra. One also has the factorization of the diagonal series D_{Y}, on $\mathcal{H}_{\varkappa}(Y)$, which reads (Bui et al., 2013)

$$
\begin{equation*}
D_{Y}:=\sum_{w \in Y^{*}} w \otimes w=\prod_{l \in \mathrm{LynY}}^{\rangle} e^{\Sigma_{l} \otimes \Pi_{l}}, \tag{2.9}
\end{equation*}
$$

where the last expression takes product of exponential in decreasing of Lyndon words.

We are now in the position to state the following

Theorem 2.1 (Hoang, 2013a).
Let A be a \mathbb{Q}-algebra, then the endomorphism of algebras

$$
\varphi_{\pi_{1}}:\left(A\langle Y\rangle, \text { conc }, 1_{Y^{*}}\right) \rightarrow\left(A\langle Y\rangle, \text { conc }, 1_{Y^{*}}\right)
$$

mapping y_{k} to $\pi_{1}\left(y_{k}\right)$, is an automorphism of $A\langle Y\rangle$ realizing an isomorphism of bialgebras between $\mathcal{H}_{\Psi}(Y)$ and

$$
\mathcal{H}_{\varkappa}(Y) \cong \mathcal{U}\left(\operatorname{Prim}\left(\mathcal{H}_{\varkappa}(Y)\right)\right) .
$$

In particular, it can be easily checked that the following diagram commutes

Hence, the bases $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ and $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ of $\mathcal{U}\left(\operatorname{Prim}\left(\mathcal{H}_{\varkappa}(Y)\right)\right)$ are images by $\varphi_{\pi_{1}}$ and by the adjoint mapping of its inverse, $\varphi_{\pi_{i}}^{v}$ of $\left\{P_{w}\right\}_{w \in Y^{*}}$ and $\left\{S_{w}\right\}_{w \in Y^{*}}$, respectively. Algorithmically, the dual
bases of homogeneous polynomials $\left\{\Pi_{w}\right\}_{w \in Y^{*}}$ and $\left\{\Sigma_{w}\right\}_{w \in Y^{*}}$ can be constructed directly and recursively by

$$
\begin{align*}
& \left\{\begin{array}{l}
\Pi_{y_{s}}=\pi_{1}\left(y_{s}\right) \text { for } y_{s} \in Y, \\
\Pi_{l}=\left[\Pi_{l_{1}}, \Pi_{l_{1}}\right] \text { for } l \in \operatorname{Lyn} Y \backslash Y, \\
\Pi_{w}=\Pi_{l_{1}}^{i_{1}} \ldots \Pi_{l_{k}}^{k_{k}} \text { for } w=l_{1}^{i_{1}} \ldots l_{k}^{i_{k}},
\end{array}\right. \tag{2.10}\\
& \left\{\begin{array}{l}
\Sigma_{y_{k}}=y_{k}, \\
\Sigma_{l}=\sum_{{ }_{\left(*_{1}\right)}} y_{s_{1}} \Sigma_{l_{1} \ldots l_{n}} \\
+\sum_{i \geq 2} \frac{1}{i!} \sum_{\left({ }^{*}\right)_{2}} y_{s_{1}^{\prime}+\ldots+s_{i}} \Sigma_{l_{1} \ldots l_{n}}, \\
\Sigma_{w}=\frac{\sum_{l_{1}}^{* i_{1}} \nVdash \ldots \Sigma_{l_{k}}^{* i_{k}}}{i_{1}!\ldots i_{k}!} .
\end{array}\right. \tag{2.11}
\end{align*}
$$

In $(*)_{2}$, the sum is taken over all $\left\{k_{1}, \ldots, k_{i}\right\} \subset\{1, \ldots, k\}$ and $l_{1} \geq \ldots \geq l_{n}$ such that
$\left(y_{s_{1}}, \ldots, y_{s_{r}}\right) \Leftarrow\left(y_{s_{k_{1}}}, \ldots, y_{s_{k_{i}}}, l_{1}, \ldots, l_{n}\right)$, where \Leftarrow denotes the transitive closure of the relation on standard sequences, denoted by \Leftarrow (Bui et al., 2013; Reutenauer, 1993).

3. Drinfel'd associator with special functions

3.1. Relations among multiple polylogarithms and multiple harmonic sums

By correspondence (3.1) and the properties of the special functions, we can define the following (morphisms) are injective

$$
\begin{gathered}
\mathrm{Li} .:\left(\mathbb{Q}\langle X\rangle, ш, 1_{X^{*}}\right) \rightarrow\left(\mathbb{Q}\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}, ., 1\right), \\
x_{0}^{n} \mapsto \log ^{n}(z) / n!, \\
x_{0}^{s_{1}-1} x_{1} \ldots x_{0}^{s_{s}-1} x_{1} \mapsto \mathrm{Li}_{x_{0}^{x_{0}-1} x_{1} \ldots x_{0}^{s_{0}^{s-1}} x_{1}}
\end{gathered}
$$

and

$$
\begin{gather*}
\mathrm{H} .:\left(\mathbb{Q}\langle Y\rangle, \boldsymbol{\omega}, 1_{Y^{*}}\right) \rightarrow\left(\mathbb{Q}\left\{\mathrm{H}_{w}\right\}_{w \in \Sigma^{*}}, ., 1\right), \\
y_{s_{1}} \ldots y_{s_{r}} \mapsto \mathrm{H}_{y_{s_{1}} \ldots s_{s_{r}}}=\mathrm{H}_{s_{1}, \ldots, s_{r}} . \tag{3.2}
\end{gather*}
$$

Hence, the families $\left\{\mathrm{Li}_{w}\right\}_{w \in X^{*}}$ and $\left\{\mathrm{H}_{w}\right\}_{w \in Y^{*}}$ are linearly independent.

Now, using D_{X} and D_{Y}, the graphs of Li . and H. are given as follows (Hoang, 2013b; Bui et al., 2015).

$$
\begin{aligned}
& \mathrm{L}:=(\mathrm{Li} . \otimes \mathrm{Id}) \mathcal{D}_{X}=\prod_{l \in \mathrm{LynX}}^{\nu} e^{\mathrm{L}_{\mathrm{s}} P_{l} P_{l}}, \\
& \text { and } \mathrm{L}_{\text {reg }}=\prod_{\substack{l \in \mathrm{LynX} \\
l \neq x_{0}, x_{1}}}^{\downarrow} e^{\mathrm{Li}_{\mathrm{s}_{l}} P_{4}} \text {, } \\
& \mathrm{H}:=(\mathrm{H} . \otimes \mathrm{Id}) D_{Y}=\prod_{l \in \mathrm{Lyn} Y} e^{\mathrm{H}_{\Sigma_{l} \Pi_{l}}}, \\
& \text { and } \mathrm{H}_{\text {reg }}=\prod_{\substack{l \in \mathrm{LynY} \\
l \neq y_{l}}}^{\longrightarrow} e^{\mathrm{H}_{\mathrm{E}_{l}} \Pi_{l}} .
\end{aligned}
$$

We note that $\mathrm{L}_{\text {reg }}$ and $\mathrm{H}_{\text {reg }}$ are generating series in regularization taking convergent words, the words are coded by convergent multi-index of polyzetas. Moreover, we set

$$
\begin{equation*}
Z_{\mathrm{w}}:=\mathrm{L}_{r e g}(1) \text { and } Z_{\mathrm{u}}:=\mathrm{H}_{r e g}(+\infty) . \tag{3.3}
\end{equation*}
$$

As for $C_{z_{0} \sim z}, \mathrm{~L}, \mathrm{~L}_{\text {reg }}$, and then Z_{\amalg} (resp. $\mathrm{H}, \mathrm{H}_{\text {reg }}$, and then Z_{\Perp}) are grouplike, for $\Delta_{ш}$ (resp. $\Delta_{ш}$). Moreover, L is also a solution of (1.4)

Theorem 2.1 (Cristian \& Hoang, 2009; Bui et al., 2015).

$$
\begin{aligned}
C_{z_{0} \rightsquigarrow z,} \mathrm{~L}\left(z_{0}\right) & =\mathrm{L}(z), \\
\lim _{z \rightarrow 0} \mathrm{~L}(z) e^{-x_{0} \log (z)} & =1, \\
\lim _{z \rightarrow 1} e^{x_{1} \log (1-z)} \mathrm{L}(z) & =Z_{\amalg} .
\end{aligned}
$$

This means that for $x_{0}=A / 2 \mathrm{i} \pi$ and $x_{1}=-B / 2 \mathrm{i} \pi$, L corresponds to G_{0} expected by Drindfel'd and Z_{\amalg} corresponds to $\Phi_{K Z}$, $\mathrm{L}(z)_{z \rightarrow 0} e^{x_{0} \log (z)} \quad$ and $\quad \mathrm{L}(z)_{z \rightarrow 1} e^{-x_{1} \log (1-z)} Z_{\text {世 }}$. Via Newton-Girard identity type, we also get (Cristian \& Hoang, 2009; Bui et al., 2015)

$$
\sum_{k \geq 0} \mathrm{H}_{y_{1}^{k}}(n) y_{1}^{k}=e^{\sum_{k \geq 1} \mathrm{H}_{y_{k}}(n)\left(-y_{1}\right)^{k} / k}
$$

and then

$$
\mathrm{H}(n)_{z \rightarrow \infty}\left(\sum_{k \geq 0} \mathrm{H}_{y_{1}^{k}}(n) y_{1}^{k}\right) \pi_{Y}\left(Z_{\amalg}\right) .
$$

It follows that
Theorem 2.2 (Cristian \& Hoang, 2009; Bui et al., 2015).

$$
\begin{aligned}
\pi_{Y}\left(Z_{\Psi}\right) & =\lim _{z \rightarrow 1} e^{y_{1} \log (1-z)} \pi_{Y}(\mathrm{~L}(z)) \\
& =\lim _{n \rightarrow \infty} e^{\sum^{\sum_{1+1}} \mathrm{H}_{y_{k}}(n)\left(-y_{1}\right)^{k} / k} \mathrm{H}(n) .
\end{aligned}
$$

Hence, the coefficients of any word w in Z_{ω} and Z_{\nrightarrow} respectively represent the finite parts (denoted by f.p.) of asymptotic expansion of multiple polylogarithm and multiple harmonic sum in the scales of comparison $\left\{(1-z)^{a} \log ^{b}\left((1-z)^{-1}\right)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}},\left\{n^{a} H_{1}^{b}(n)\right\}_{a \in Z, b \in \mathbb{N}}$.

This means that

$$
\text { f.p. }{ }_{z \rightarrow 1} \operatorname{Li}_{w}(z)=\left\langle Z_{ш} \mid w\right\rangle
$$

$$
\text { f.p. }{ }_{n \rightarrow+\infty} H_{w}(n)=\left\langle Z_{\not} \mid w\right\rangle .
$$

Example 2.1 (Cristian \& Hoang, 2009).
In convergence case,

$$
\begin{aligned}
\mathrm{Li}_{2,1}(z)= & \zeta(3)+(1-z) \log (1-z)-(1-z)^{-1} \\
& -(1-z) \log ^{2}(1-z) / 2 \\
& +(1-z)^{2}\left(-\log ^{2}(1-z)+\log (1-z)\right) / 4+\ldots,
\end{aligned}
$$

$\mathrm{H}_{2,1}(n)=\zeta(3)-(\log (n)+1+\gamma) / n+\log (n) / 2 n+\ldots$, one has

$$
\text { f.p. }{ }_{z \rightarrow 1} \mathrm{Li}_{2,1}(z)=\text { f. } \mathrm{p}_{n \rightarrow+\infty} \mathrm{H}_{2,1}(n)=\zeta(2,1)=\zeta(3) .
$$

In divergence case

$$
\begin{aligned}
\mathrm{Li}_{1,2}(z)= & 2-2 \zeta(3)-\zeta(2) \log (1-z) \\
& -2(1-z) \log (1-z)+(1-z) \log ^{2}(1-z) \\
& +(1-z)^{2}\left(\log ^{2}(1-z)-\log (1-z)\right) / 2+\ldots, \\
\mathrm{H}_{1,2}(n)= & \zeta(2) \gamma-2 \zeta(3)+\zeta(2) \log (n) \\
& +(\zeta(2)+2) / 2 n+\ldots,
\end{aligned}
$$

since numerically,

$$
\zeta(2) \gamma=0.949481711114981524545564 \ldots
$$

then one has

$$
\begin{aligned}
\text { f.p. } ._{z \rightarrow 1} \mathrm{Li}_{1,2}(z) & =2-2 \zeta(3), \\
\text { f.p. } ._{n \rightarrow+\infty} H_{1,2}(n) & =\zeta(2) \gamma-2 \zeta(3) .
\end{aligned}
$$

Moreover, the relations among the multiple polylogarithms indexed by basis $\left\{S_{l}\right\}_{l \in \mathrm{LynX}}$ follow

$$
\begin{aligned}
\mathrm{Li}_{S_{x 00}}(z) & =\log (z), \mathrm{Li}_{S_{x 1}}(z)=-\log (1-z), \\
\mathrm{Li}_{S_{x 901}}(z) & =-\log (z) \log (1-z)-\mathrm{Li}_{S_{x_{001}}}(1-z) \\
& +\zeta\left(S_{x_{x_{0}} x_{1}}\right),
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Li}_{S_{x_{00_{1}^{1}}}}(z)= & \frac{1}{2} \log (1-z)^{2} \log (z) \\
& +\log (1-z) \operatorname{Li}_{S_{x_{001}}}(1-z) \\
& -\operatorname{Li}_{S_{x_{0} z_{1}}}(1-z)+\zeta\left(S_{x_{0}^{2} x_{1}}\right) \\
& +\log (z) \zeta\left(S_{x_{0} x_{1}}\right) .
\end{aligned}
$$

Using the correspondences given in (3.4), let us consider then the following \mathbb{Q}-algebra of convergent polyzetas, being algebraically generated by $\{\zeta(l)\}_{l \in \operatorname{LynX}-X}$ (resp. $\left\{\zeta\left(S_{l}\right)\right\}_{l \in \operatorname{LynX}-X}$), or equivalently, by $\{\zeta(l)\}_{l \in \operatorname{Lyn} Y-\left\{y_{1}\right\}} \quad$ (resp. $\left.\left\{\zeta\left(\Sigma_{l}\right)\right\}_{l \in \operatorname{Lyn} Y-\left\{y_{l}\right\}}\right)$:

$$
\begin{align*}
\mathcal{Z} & :=\operatorname{span}_{\mathbb{Q}}\{\zeta(w)\}_{w \in x_{0} X^{*} x_{1}} \\
& =\operatorname{span}_{\mathbb{Q}}\{\zeta(w)\}_{w \in Y^{*} \backslash y_{1} Y^{*}} . \tag{3.5}
\end{align*}
$$

For any $k \geq 1$ let

$$
\begin{align*}
\mathcal{Z}_{k} & :=\operatorname{span}_{\mathbb{Q}}\{\zeta(w)\}_{\substack{w \in x_{0} X^{*} x_{1} \\
|w|=k}} \\
& =\operatorname{span}_{\mathbb{Q}}\{\zeta(w)\}_{w \in\left(Y-\left\{y_{1}\right)\right) Y^{*}}^{(w)=k} \tag{3.6}
\end{align*}
$$

Now, considering the third and last noncommutative generating series of polyzetas (Cristian \& Hoang, 2009; Bui et al., 2015)

$$
\begin{equation*}
Z_{\gamma}=\sum_{w \in Y^{*}} \gamma_{w} w, \tag{3.7}
\end{equation*}
$$

where $\quad \gamma_{w}=\mathrm{f} . \mathrm{p}_{n \rightarrow+\infty} \mathrm{H}_{w}(n) \quad$ on the scale $\gamma_{w}=\mathrm{f} . \mathrm{p}_{n \rightarrow+\infty} \mathrm{H}_{w}(n),\left\{n^{a} \log ^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$.

For any $w \in Y^{*} \backslash y_{1} Y^{*}$, one has $\gamma_{w}=\zeta(w)$ and $\gamma_{y_{1}}=\gamma$ (Euler's constant). The series Z_{γ} is group-like, for $\Delta_{\text {ж }}$. Then (Hoang, 2013; Bui Van Chien et al., 2015)

$$
\begin{equation*}
Z_{\gamma}=e^{\gamma y_{1}} \prod_{l \in \mathrm{~L} y n Y \backslash\left\{y_{1}\right\}}^{\nu} e^{\zeta(l) \Pi_{l}}=e^{\gamma y_{1}} Z_{\omega} . \tag{3.8}
\end{equation*}
$$

Moreover, introducing the following ordinary generating series ${ }^{\text {i }}$

$$
\begin{gather*}
B\left(y_{1}\right):=\exp \left(\gamma y_{1}-\sum_{k \geq 2} \zeta(k) \frac{\left(-y_{1}\right)^{k}}{k}\right), \tag{3.9}\\
B^{\prime}\left(y_{1}\right):=\exp \left(\sum_{k \geq 2} \zeta(k) \frac{\left(-y_{1}\right)^{k}}{k}\right), \tag{3.10}
\end{gather*}
$$

Theorem 2.3 (Hoang, 2013b; Bui et al., 2015).

$$
\begin{equation*}
Z_{\gamma}=B\left(y_{1}\right) \pi_{Y} Z_{\omega} \tag{3.11}
\end{equation*}
$$

or equivalently by simplification

$$
\begin{equation*}
Z_{\text {ж }}=B^{\prime}\left(y_{1}\right) \pi_{Y} Z_{\text {ш }} \tag{3.12}
\end{equation*}
$$

Identifying the coefficients in these identities, we get

$$
\begin{aligned}
& \gamma_{\dot{x}, \mathrm{w}}=\sum_{i=0}^{k} \frac{\zeta\left(x_{0}\left[\left(-x_{1}\right)^{k-1} \omega \pi_{x} w\right]\right)}{i!}\left(\sum_{j=1}^{i} b_{i, j}(\gamma,-\zeta(2), 2 \zeta(3), \ldots)\right),
\end{aligned}
$$

where $k \in \mathbb{N}_{+}, w \in Y^{+} \quad$ and $\quad b_{n, k}\left(t_{1}, \ldots, t_{k}\right) \quad$ are Bell polynomials.

Example 2.2 (Cristian and Hoang, 2009).
With the correspondences given in (3.13), we get

$$
\begin{aligned}
\gamma_{1,1}= & \frac{1}{2}\left(\gamma^{2}-\zeta(2)\right), \gamma_{1,1,1} \\
& =\frac{1}{6}\left(\gamma^{3}-3 \zeta(2) \gamma+2 \zeta(3)\right) . \\
\gamma_{1,7} & =\zeta(7) \gamma+\zeta(3) \zeta(5)-\frac{54}{175} \zeta(2)^{4}, \\
\gamma_{1,1,6}= & \frac{4}{35} \zeta(2)^{3} \gamma^{2}+\left(\zeta(2) \zeta(5)+\frac{2}{5} \zeta(3) \zeta(2)^{2}\right. \\
& -4 \zeta(7)) \gamma+\zeta(6,2)+\frac{19}{35} \zeta(2)^{4} \\
& +\frac{1}{2} \zeta(2) \zeta(3)^{2}-4 \zeta(3) \zeta(5) .
\end{aligned}
$$

3.2. Relations of polyzetas

As the limits $\lim _{z \rightarrow 1} \mathrm{Li}_{s}(z)=\lim _{n \rightarrow \infty} \mathrm{H}_{s}(n)=\zeta(s)$ for any convergent multi-index ${ }^{\text {ii }} s$, polyzetas inherits properties both of multiple polylogarithms and multiple harmonic sums. We can define polyzetas as a morphism of shuffle and quasishuffle products from $\left(\mathbb{Q} 1_{x^{*}} \oplus x_{0} \mathbb{Q} X x_{1}, \omega, 1_{x^{*}}\right)$ or $\left(\mathbb{Q} 1_{Y^{*}} \oplus\left(Y \backslash\left\{y_{1}\right\}\right) \mathbb{Q}\langle Y\rangle\right.$, ж, $\left.1_{Y^{*}}\right) \quad$ onto \mathbb{Q}-algebra, denoted by \mathcal{Z}, algebraically generated by the convergent polyzetas
$\{\zeta(l)\}_{l \in \mathrm{~L} y n X-X}$ (Bui et al., 2015). It can be extended as characters

$$
\zeta:\left(\mathbb{Q}\langle X\rangle,, 1_{X^{*}}\right) \rightarrow(\mathbb{R}, ., 1)
$$

$$
\zeta, \gamma_{.}:\left(\mathbb{Q}\langle Y\rangle,, 1_{Y^{*}}\right) \rightarrow(\mathbb{R}, ., 1)
$$

such that，for any $w \in X^{*}$ ，one has the finite part corresponding the scales $\left\{(1-z)^{a} \log ^{b}(1-z)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}},\left\{n^{a} \mathrm{H}_{1}^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}} \quad$ and $\left\{n^{a} \log ^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$ as follows

$$
\begin{aligned}
\zeta_{\mathrm{w}}(w) & =\mathrm{f} \cdot \mathrm{p} \cdot_{z \rightarrow 1} \mathrm{Li}_{w}(z), \\
\zeta_{\mathcal{K}}\left(\pi_{Y} w\right) & =\mathrm{f} \cdot \mathrm{p} \cdot{ }_{n \rightarrow+\infty} \mathrm{H}_{\pi_{Y} w}(n), \\
\gamma_{\pi_{Y} w} & =\mathrm{f} . \mathrm{p} \cdot_{n \rightarrow+\infty} \mathrm{H}_{\pi_{Y} l}(n) .
\end{aligned}
$$

It follows that，$\zeta_{\mathrm{w}}\left(x_{0}\right)=0=\log (1)$ and the finite parts，corresponding the scales $\left\{(1-z)^{a} \log ^{b}(1-z)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}},\left\{n^{a} \mathbf{H}_{1}^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$, $\left\{n^{a} \log ^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$ ，as follows

$$
\begin{aligned}
\zeta_{\mathrm{w}}\left(x_{1}\right)= & =\mathrm{f} \cdot \mathrm{p} \cdot{ }_{z \rightarrow 1} \log (1-z), \\
\zeta_{\mathrm{w}}\left(y_{1}\right)= & =\mathrm{f} \cdot \mathrm{p} \cdot n \rightarrow+\infty \\
\gamma_{y_{1}} & =\gamma=\mathrm{f} . \mathrm{p} \cdot{ }_{n \rightarrow+\infty} \mathrm{H}_{1}(n),
\end{aligned}
$$

and the following convergent polyzetas，

$$
\begin{aligned}
& \forall l \in \operatorname{Lyn} X-X, \\
& \zeta_{\amalg}(l)=\zeta_{\neq}\left(\pi_{Y} l\right)=\gamma_{\pi_{y} l}=\zeta(l), \\
& \zeta_{巴}\left(S_{l}\right)=\zeta_{\star}\left(\pi_{Y} S_{l}\right)=\gamma_{\pi_{\nu} S_{l}}=\zeta\left(S_{l}\right), \\
& \forall l \in \operatorname{Lyn} Y-\left\{y_{1}\right\} \text {, } \\
& \zeta_{ж}(l)=\zeta_{巴}\left(\pi_{X} l\right)=\gamma_{l}=\zeta(l), \\
& \zeta_{\neq}\left(\Sigma_{l}\right)=\zeta_{\Perp}\left(\pi_{X} \Sigma_{l}\right)=\gamma_{\Sigma_{l}}=\zeta\left(\Sigma_{l}\right) .
\end{aligned}
$$

In（Cristian \＆Hoang，2009），polynomial relations among $\{\zeta(l)\}_{l \in \operatorname{LynX}-X}$（or $\left.\{\zeta(l)\}_{l \in \operatorname{LynY}-\left\{y_{1}\right\}}\right)$ ， are obtained using the double shuffle relations．The identification of local coordinates in $Z_{\gamma}=B\left(y_{1}\right) \pi_{Y} Z_{\omega}$ ，leads to a family of algebraic generators $\mathcal{Z}_{i r r}^{\infty}(X)$ of \mathcal{Z}

$$
\begin{aligned}
\mathcal{Z}_{i r r}^{\leq 2}(\mathcal{X}) & \subset \cdots \subset \mathcal{Z}_{i r}^{\leq p}(\mathcal{X}) \subset \cdots \subset \mathcal{Z}_{i r r}^{\infty}(\mathcal{X}) \\
& =\bigcup_{p \geq 2} \mathcal{Z}_{i r r}^{\leq p}(\mathcal{X})
\end{aligned}
$$

and their inverse image by a section of ζ

$$
\begin{aligned}
\mathcal{L}_{i r r}^{\leq 2}(\mathcal{X}) & \subset \cdots \subset \mathcal{L}_{i r}^{\leq p}(\mathcal{X}) \subset \cdots \subset \mathcal{L}_{i r r}^{\infty}(\mathcal{X}) \\
& =\bigcup_{p \geq 2} \mathcal{L}_{i r r}^{\leq p}(\mathcal{X})
\end{aligned}
$$

such that the following restriction is bijective

$$
\begin{aligned}
\zeta: \mathbb{Q}\left[\mathcal{L}_{i r r}^{\infty}(X)\right] & \rightarrow \mathcal{Z}=\mathbb{Q}\left[\mathcal{Z}_{i r r}^{\infty}(\mathcal{X})\right] \\
& =\mathbb{Q}\left[\{\zeta(p)\}_{p \in \mathcal{L}_{i r r}^{\infty}(\mathcal{X})}\right] .
\end{aligned}
$$

Moreover，the following sub ideals of $\operatorname{ker} \zeta$

$$
\begin{aligned}
& R_{Y}:=\left(\operatorname{span}_{\mathbb{Q}}\left\{Q_{l}\right\}_{\left.l \in \operatorname{Lyn} Y \backslash y_{1}\right\}},,_{1} 1_{Y^{*}}\right), \\
& R_{X}:=\left(\operatorname{span}_{\mathbb{Q}}\left\{Q_{l}\right\}_{l \in \mathrm{LynX} \backslash X}, \boldsymbol{\omega}, 1_{X^{*}}\right)
\end{aligned}
$$

are generated by the polynomials $\left\{Q_{l}\right\}_{l \in \operatorname{Lyn} \mathcal{X}}$ ， $l \notin\left\{y_{1}, x_{0}, x_{1}\right\}$
homogeneous in weight such that the following assertions are equivalent：
i．$Q_{l}=0$ ，
ii．$\Sigma_{l} \rightarrow \Sigma_{l}$（resp．$S_{l} \rightarrow S_{l}$ ），
iii．$\Sigma_{l} \in \mathcal{L}_{\text {lirr }}^{\infty}(Y)\left(\right.$ resp．$\left.S_{l} \in \mathcal{L}_{\text {irr }}^{\infty}(X)\right)$ ．
Any polynomial $Q_{l}(\neq 0)$ is led by Σ_{l}（resp． S_{l} ），being transcendent over the sub algebra $\mathbb{Q}\left[\mathcal{L}_{\text {irr }}^{\infty}(\mathcal{X})\right]$ ，and $\Sigma_{l} \rightarrow \mathrm{Y}_{l}$
（resp．$S_{l} \rightarrow U_{l}$ ）being homogeneous of weight $p=(l)$ and belonging to
$\left.\mathbb{Q}\left[\mathcal{L}_{i r}^{\leq p}(\mathcal{X})\right)\right]$ ．In other terms，$\Sigma_{l}=Q_{l}+\mathrm{Y}_{l}$ i．e． $\operatorname{span}_{\mathbb{Q}}\left\{S_{l}\right\}_{l \in \mathrm{LynX} \backslash X}=R_{\mathcal{X}} \oplus \operatorname{span}_{\mathbb{Q}} \mathcal{L}_{\text {irr }}^{\infty}(\mathcal{X})$
（resp．$S_{l}=Q_{l}+U_{l} \quad$ which follows $\operatorname{span}_{\mathbb{Q}}\left\{\Sigma_{l}\right\}_{l \in \operatorname{Lyn} Y \backslash\left\{y_{1}\right\}}=R_{\mathcal{X}} \oplus \operatorname{span}_{\mathbb{Q}} \mathcal{L}_{\text {irr }}^{\infty}(\mathcal{X})$.

For any $w \in x_{0} X^{*} x_{1}\left(\right.$ resp．$\left.\left.Y \backslash\left\{y_{1}\right\}\right) Y^{*}\right)$ ，by the Radford＇s theorem（Reutenauer，1993），one has $\zeta(w) \in \mathbb{Q}\left[\mathcal{Z}_{\text {irr }}^{\infty}(\mathcal{X})\right]$ ．Hence，for any $P \in \mathbb{Q}\left[\left\{S_{l}\right\}_{l \in \mathrm{LynX} \backslash X}\right]$（resp． $\mathbb{Q}\left[\left\{\Sigma_{l}\right\}_{l \in \mathrm{Lyn} Y \backslash\left\{y_{1}\right]}\right]$
such that $P \notin \operatorname{ker} \zeta \supseteq R_{\mathcal{X}}$ ，one gets，by linearity， $\zeta(P) \in \mathbb{Q}\left[\mathcal{Z}_{i r r}^{\infty}(\mathcal{X})\right]$ ．

Next，let $\quad Q \in R_{\mathcal{X}} \cap \mathbb{Q}\left[\mathcal{L}_{\text {irr }}^{\infty}(\mathcal{X})\right]$ ．Since $R_{\mathcal{X}} \subseteq \operatorname{ker} \zeta$ then $\zeta(Q)=0$ ．Moreover，restricted on $\mathbb{Q}\left[\mathcal{L}_{\text {irr }}^{\infty}(\mathcal{X})\right]$ ，the polymorphism ζ is bijective and then $Q=0$ ．It follows that

Proposition 2.3 （Hoang，2013b；Bui et al．， 2015）．

$$
\begin{aligned}
\mathbb{Q}\left[\left\{S_{l}\right\}_{l \in \mathrm{Lyn} X \backslash X}\right] & =R_{X} \oplus \mathbb{Q}\left[\mathcal{L}_{i r r}^{\infty}(X)\right], \\
\mathbb{Q}\left[\left\{\Sigma_{l}\right\}_{l \in \mathrm{Lyn} \backslash \backslash y_{1},}\right] & =R_{Y} \oplus \mathbb{Q}\left[\mathcal{L}_{i r r}^{\infty}(Y)\right] .
\end{aligned}
$$

Via CQMM theorem and by duality, one deduces then

Corollary 2.2.

$$
\left.\begin{array}{l}
\mathcal{U}\left(\mathcal{L i e}_{\mathbb{Q}}\langle X\rangle \backslash X\right)=\mathcal{J}_{X} \oplus \mathcal{U}\left(\mathcal{L i e}_{\mathbb{Q}}\left(\begin{array}{c}
\left\{P_{l}\right\} \\
l \in \operatorname{Lyn} X \\
S_{l} \in \mathcal{L}_{i r r}^{\infty}(X)
\end{array}\right)\right.
\end{array}\right),
$$

where \mathcal{J}_{X} (resp. \mathcal{J}_{Y}) is a Lie ideal generated by $\left\{P_{l}\right\}_{l \in \mathrm{Lynx}: S_{l} \notin \mathcal{E}_{i r r}^{\infty}(X)}\left(\right.$ resp. $\left.\left\{\Pi_{l}\right\}_{l \in \mathrm{LynY} Y \mathrm{I}_{l} \notin \mathcal{L}_{i r r}^{\infty}(Y)}\right)$.

Now, let $Q \in \operatorname{ker} \zeta,\left\langle Q 1_{\mathcal{X}^{*}}=0\right.$. Then $Q=Q_{1}+Q_{2}$ with $Q_{1} \in R_{\mathcal{X}}$ and $Q_{2} \in \mathbb{Q}\left[\mathcal{L}_{\text {irr }}^{\infty}(\mathcal{X})\right]$. Thus, $Q \equiv_{R_{X}} Q_{1} \in R_{\mathcal{X}}$ and then

Corollary 2.3 (Hoang, 2013b; Bui et al., 2015).

$$
\mathbb{Q}\left[\{\zeta(p)\}_{p \in \epsilon_{i r}^{i r}}(\mathcal{X})\right]=\mathcal{Z}=\operatorname{Im} \zeta \text { and } R_{\mathcal{X}}=\operatorname{ker} \zeta .
$$

On the other hand, one also has

$$
\begin{aligned}
\mathcal{Z} & \cong \mathbb{Q} 1_{Y^{*}} \oplus\left(Y-\left\{y_{1}\right\}\right) \mathbb{Q}\langle Y\rangle / \operatorname{ker} \zeta \\
& \cong \mathbb{Q} 1_{x^{*}} \oplus x_{0} \mathbb{Q} X x_{1} / \operatorname{ker} \zeta .
\end{aligned}
$$

Hence, as an ideal generated by homogeneous in weight polynomials, $\operatorname{ker} \zeta$ is graded and so is \mathcal{Z} :

Corollary 2.4 (Hoang, 2013b; Bui et al., 2015).

$$
\begin{equation*}
\mathcal{Z}=\mathbb{Q} 1 \oplus \underset{k \geq 2}{\oplus} \mathcal{Z}_{k} . \tag{3.14}
\end{equation*}
$$

Now, let $\xi=\zeta(P)$, where $P \in \mathbb{Q}\langle\mathcal{X}\rangle$ and $P \notin \operatorname{ker} \zeta$, homogeneous in weight. Since, for any p and $n \geq 1$, one has $\mathcal{Z}_{p} \mathcal{Z}_{n} \subset \mathcal{Z}_{p+n}$
then each monomial ξ^{n}, for $n \geq 1$, is of different weight. Thus ξ could not satisfy

$$
\xi^{n}+a_{n-1} \xi^{n-1}+\ldots=0, \text { with } a_{n-1}, \ldots \in \mathbb{Q} \text {. }
$$

Corollary 2.5 (Hoang, 2013b; Bui et al., 2015). Any $s \in \mathcal{L}_{\text {irr }}^{\infty}(\mathcal{X})$ is homogeneous in weight then $\zeta(s)$ is transcendent over \mathbb{Q}.

Example 2.3 Polynomials relations on local coordinates (Bui et al., 2015). Due to the bridge equation (3.12), we obtain Table 1.

Table 1. Polynomial relations of polyzetas on transcendence bases

Relations on $\left\{\zeta\left(\Sigma_{l}\right)\right\}_{l \in \mathcal{L} y n Y-\left\{y_{1}\right\}}$			Relations on $\left\{\zeta\left(S_{l}\right)\right\}_{l \in \mathcal{L} y n X-X}$	
3	$\zeta\left(\Sigma_{y_{2} y_{1}}\right)=$	$\frac{3}{2} \zeta\left(\Sigma_{y_{3}}\right)$	$\zeta\left(S_{x_{0} x_{1}^{2}}\right)=$	$\zeta\left(S_{x_{0}^{2} x_{1}}\right)$
4	$\zeta\left(\Sigma_{y_{4}}\right)=$	$\frac{2}{5} \zeta\left(\Sigma_{y_{2}}\right)^{2}$	$\zeta\left(S_{x_{0}^{3} x_{1}}\right)$	$\frac{2}{5} \zeta\left(S_{x_{0} x_{1}}\right)^{2}$
	$\zeta\left(\Sigma_{y_{3} y_{1}}\right)=$	$\frac{3}{10} \zeta\left(\Sigma_{y_{2}}\right)^{2}$	$\zeta\left(S_{x_{0}^{2} x_{1}^{2}}\right)$	$\frac{1}{10} \zeta\left(S_{x_{0} x_{1}}\right)^{2}$
	$\zeta\left(\Sigma_{y_{2} y_{1}^{2}}\right)=$	$\frac{2}{3} \zeta\left(\Sigma_{y_{2}}\right)^{2}$	$\zeta\left(S_{x_{0} x_{1}^{3}}\right)$	$\frac{2}{5} \zeta\left(S_{x_{00} x_{1}}\right)^{2}$
5	$\zeta\left(\Sigma_{y_{3} y_{2}}\right)=$	$3 \zeta\left(\Sigma_{y_{3}}\right) \zeta\left(\Sigma_{y_{2}}\right)-5 \zeta\left(\Sigma_{y_{5}}\right)$	$\zeta\left(S_{x_{0}^{3} x_{1}^{2}}\right)=$	$-\zeta\left(S_{x_{0}^{2} x_{1}}\right) \zeta\left(S_{x_{0} x_{1}}\right)+2 \zeta\left(S_{x_{0}^{4} x_{1}}\right)$
	$\zeta\left(\Sigma_{y_{4} y_{1}}\right)=$	$-\zeta\left(\Sigma_{y_{3}}\right) \zeta\left(\Sigma_{y_{2}}\right)+\frac{5}{2} \zeta\left(\Sigma_{y_{5}}\right)$	$\zeta\left(S_{x_{0}^{2} x_{1} x_{0} x_{1}}\right)$	$-\frac{3}{2} \zeta\left(S_{x_{0}^{4} x_{1}}\right)+\zeta\left(S_{x_{0}^{2} x_{1}}\right) \zeta\left(S_{x_{0} x_{1}}\right)$
	$\zeta\left(\Sigma_{y_{2}^{2} y_{1}}\right)=$	$\frac{3}{2} \zeta\left(\Sigma_{y_{3}}\right) \zeta\left(\Sigma_{y_{2}}\right)-\frac{25}{12} \zeta\left(\Sigma_{y 5}\right)$	$\zeta\left(S_{x_{0}^{2} x_{1}^{3}}\right)=$	$-\zeta\left(S_{x_{0}^{2} x_{1}}\right) \zeta\left(S_{x_{0} x_{1}}\right)+2 \zeta\left(S_{x_{0}^{4} x_{1}}\right)$
	$\zeta\left(\Sigma_{y_{3} y_{1}^{2}}^{2}\right)=$	$\frac{5}{12} \zeta\left(\Sigma_{y_{5}}\right)$	$\zeta\left(S_{x_{0} x_{1} x_{0} x_{1}^{2}}\right)$	$\frac{1}{2} \zeta\left(S_{x_{0}^{4} x_{1}}\right)$
	$\zeta\left(\Sigma_{y_{2} y_{1}^{3}}\right)=$	$\frac{1}{4} \zeta\left(\Sigma_{y_{3}}\right) \zeta\left(\Sigma_{y_{2}}\right)+\frac{5}{4} \zeta\left(\Sigma_{y_{5}}\right)$	$\zeta\left(S_{x_{0} x_{1}^{4}}\right)=$	$\zeta\left(S_{x_{0}^{4} x_{1}}\right)$
6	$\zeta\left(\Sigma_{y_{6}}\right)=$	$\frac{8}{35} \zeta\left(\Sigma_{y_{2}}\right)^{3}$	$\zeta\left(S_{x_{0}^{5} x_{1}}\right)=$	$\frac{8}{35} \zeta\left(S_{x_{0} x_{1}}\right)^{3}$
	$\zeta\left(\Sigma_{y_{4} y_{2}}\right)=$	$\zeta\left(\Sigma_{y_{3}}\right)^{2}-\frac{4}{21} \zeta\left(\Sigma_{y_{2}}\right)^{3}$	$\zeta\left(S_{x_{0}^{4} x_{1}^{2}}\right)=$	$\frac{6}{35} \zeta\left(S_{x_{0} x_{1}}\right)^{3}-\frac{1}{2} \zeta\left(S_{x_{0}^{2} x_{1}}\right)^{2}$
	$\zeta\left(\Sigma_{y_{5} y_{1}}\right)=$	$\frac{2}{7} \zeta\left(\Sigma_{y_{2}}\right)^{3}-\frac{1}{2} \zeta\left(\Sigma_{y_{3}}\right)^{2}$	$\zeta\left(S_{x_{0}^{3} x_{1} x_{0} x_{1}}\right)=$	$\frac{4}{105} \zeta\left(S_{x_{0} x_{1}}\right)^{3}$
	$\zeta\left(\Sigma_{y_{3} y_{1} y_{2}}\right)=$	$-\frac{17}{30} \zeta\left(\Sigma_{y_{2}}\right)^{3}+\frac{9}{4} \zeta\left(\Sigma_{y_{3}}\right)^{2}$	$\zeta\left(S_{x_{0}^{3} x_{1}^{3}}\right)$	${ }_{70}^{23} \zeta\left(S_{x_{0} x_{1}}\right)^{3}-\zeta\left(S_{x_{0}^{2} x_{1}}\right)^{2}$
	$\zeta\left(\Sigma_{y_{3} y_{2} y_{1}}\right)=$	$3 \zeta\left(\Sigma_{y_{3}}\right)^{2}-\frac{9}{10} \zeta\left(\Sigma_{y_{2}}\right)^{3}$	$\zeta\left(S_{x_{0}^{2} x_{1} x_{0} x_{1}^{2}}\right)=$	$\frac{2}{105} \zeta\left(S_{x_{0} x_{1}}\right)^{3}$
	$\zeta\left(\Sigma_{y 4 y_{1}^{2}}\right)=$	$\frac{3}{10} \zeta\left(\Sigma_{y_{2}}\right)^{3}-\frac{3}{4} \zeta\left(\Sigma_{y_{3}}\right)^{2}$	$\zeta\left(S_{x_{0}^{2} x_{1}^{2} x_{0} x_{1}}\right)=$	$-\frac{89}{210} \zeta\left(S_{x_{0} x_{1}}\right)^{3}+\frac{3}{2} \zeta\left(S_{x_{0} x_{1}}\right)^{2}$
	$\zeta\left(\Sigma_{y_{2}^{2} y_{1}^{2}}\right)=$	$\frac{11}{63} \zeta\left(\Sigma_{y_{2}}\right)^{3}-\frac{1}{4} \zeta\left(\Sigma_{y_{3}}\right)^{2}$	$\zeta\left(S_{x_{0}^{2} x_{1}^{4}}\right)$	$\frac{6}{35} \zeta\left(S_{x_{0} x_{1}}\right)^{3}-\frac{1}{2} \zeta\left(S_{x_{0}^{2} x_{1}}\right)^{2}$
	$\zeta\left(\Sigma_{y_{3} y_{1}^{3}}\right)=$	$\frac{1}{21} \zeta\left(\Sigma_{y_{2}}\right)^{3}$	$\zeta\left(S_{x_{0} x_{1} x_{0} x_{1}^{3}}\right)$	$\frac{8}{21} \zeta\left(S_{x_{0} x_{1}}\right)^{3}-\zeta\left(S_{x_{0}^{2} x_{1}}\right)^{2}$
	$\zeta\left(\Sigma_{y_{2} y_{1}^{4}}\right)=$	$\frac{17}{50} \zeta\left(\Sigma_{y_{2}}\right)^{3}+\frac{3}{16} \zeta\left(\Sigma_{y_{3}}\right)^{2}$	$\zeta\left(S_{x_{0} x_{1}^{5}}\right)=$	$\frac{8}{35} \zeta\left(S_{x_{0} x_{1}}\right)^{3}$

Example 2.4 (Bui et al. 2015). List of irreducible polyzetas up to weight 12 for each transcendence basis:

$$
\begin{aligned}
& \mathcal{Z}_{i r r}^{\leq 12}(X)=\left\{\zeta\left(S_{x_{0} x_{1}}\right), \quad \zeta\left(S_{x_{0}^{2} x_{1}}\right), \quad \zeta\left(S_{x_{0}^{4} x_{1}}\right),\right. \\
& \zeta\left(S_{x_{0}^{6} x_{1}}\right), \quad \zeta\left(S_{x_{0} x_{1}^{2} x_{0} x_{1}^{4}}\right), \quad \zeta\left(S_{x_{0}^{8} x_{1}}\right), \quad \zeta\left(S_{x_{0} x_{1}^{2} x_{0} x_{1}^{6}}\right), \\
& \left.\zeta\left(S_{x_{0}^{10} x_{1}}\right), \zeta\left(S_{x_{0} \gamma_{1}^{3} x_{0} x_{1}^{x}}\right), \zeta\left(S_{x_{0} x_{1}^{2} x_{0} x_{1}^{x_{1}}}\right), \zeta\left(S_{x_{0} x_{1}^{4} x_{0} x_{1}^{x_{1}}}\right)\right\} \text {. } \\
& \mathcal{Z}_{i r r}^{\leq 12}(Y)=\left\{\zeta\left(\Sigma_{y_{2}}\right), \quad \zeta\left(\Sigma_{y_{3}}\right), \quad \zeta\left(\Sigma_{y_{5}}\right), \quad \zeta\left(\Sigma_{y_{7}}\right),\right. \\
& \zeta\left(\Sigma_{y_{y_{3}} y_{1}^{s}}\right), \quad \zeta\left(\Sigma_{y_{9}}\right), \quad \zeta\left(\Sigma_{\left.y_{3}\right\}_{1}^{Y_{1}^{\prime}}}\right), \quad \zeta\left(\Sigma_{y_{11}}\right), \quad \zeta\left(\Sigma_{y_{2} y_{1}^{\prime}}\right), \\
& \left.\zeta\left(\Sigma_{y_{3} y_{1}^{\text {g }}}\right), \zeta\left(\Sigma_{y_{2}^{2} y_{1}^{s}}\right)\right\} \text {. }
\end{aligned}
$$

4. Conclusion

We reviewed a method to reduce relations of the special functions indexed by transcendence bases of shuffle and quasi-shuffle algebras due to the Drinfel'd associator. Starting from the research of Knizhnik-Zamolodchikov about a form of a differential equation, a bridge equation is constructed, and it can be applied to the case of the generating series of the special functions. Relations in form of asymptotic expansions or explicit representations hold by the identification of local coordinates of the bridge equation.

References

Cartier, P. (1987). Jacobienne généralisées, monodromie unipotente et intégrales intérées. Paris: Séminaire BOURBAKI.
Chien, B. V., Duchamp, G. H. E., \& Hoang, N. M. V. (2013). Schützenberger's factorization on the (completed) Hopf algebra of q-stuffle product. JP Journal of Algebra, Number Theory and Applications, 30, 191-215.
Chien, B. V., Duchamp, G. H. E. \& Hoang, N. M. V. (2015). Structure of Polyzetas and Explicit Representation on Transcendence Bases of Shuffle and Stuffle Algebras. P. Symposium on Symbolic and Algebraic Computation, 40, 93-100.

Chien B. V., Duchamp G. H. E., \& Hoang, N. M. V. (2015). Computation tool for the q deformed quasi-shuffle algebras and representations of structure of MZVs. ACM Communications in Computer Algebra, 49, 117-120.
Cristian, C., \& Hoang, N. M. V. (2009). Noncommutative algebra, multiple harmonic sums and applications in discrete probability. Journal of Symbolic Computation, 801-817.
Drinfel'd, V. G. (1990). On quasitriangular quasiHopf algebras and on a group that. Algebra i Analiz, 2, 149-181.

Hoang, N. M. (2013a). On a conjecture by Pierre Cartier about a group of associators. Acta Mathematica Vietnamica, 38, 339-398.
Hoang, N. M. (2013b). Structure of polyzetas and Lyndon words. Vietnam Journal of Mathematics, 41, 409-450.
Knizhnik, V. G., \& Zamolodchikov, A. B. (1984). Current algebra and Wess-Zumino model in two dimensions. Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems, 247, 83-103.

Radford, D. E. (1979). A natural ring basis for the shuffle algebra and an application to group schemes. Journal of Algebra, 58, 432-454.
Ree, R. (1958). Lie elements and an algebra associated with shuffles. Annals of Mathematics. Second Series, 68, 210-220.
Reutenauer, C. (1993). Free Lie algebras. Clarendon Press: The Clarendon Press, Oxford University Press, New York.
Thang, L. T. Q., \& Murakami, J. (1996). Kontsevich's integral for the Kauffman polynomial. Nagoya Mathematical Journal, 142, 39-65.

[^1]
[^0]: DOI: https://doi.org/10.52714/dthu.11.5.2022.976
 Cite: Bui, V. C. (2022). Drinfel'd associator and relations of some special functions. Dong Thap University Journal of Science, 11(5), 19-28. https://doi.org/10.52714/dthu.11.5.2022.976.

[^1]: ${ }^{\mathrm{i}}$ For any $k \geq 1,\left\langle\log B\left(y_{1}\right) \mid y_{1}^{k}\right\rangle=$ f.p. ${ }_{n \rightarrow+\infty}\left\langle\sum_{l \geq 1} \mathrm{H}_{y_{l}}(n)\left(-y_{1}\right)^{l} / l \mid y_{1}^{k}\right\rangle,\left\{n^{a} \log ^{b}(n)\right\}_{a \in \mathbb{Z}, b \in \mathbb{N}}$.
 ii $s=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{N}^{r}$ is a convergent multi-index if $s_{1} \geq 2$.

