Dong Thap University Journal of Science, Vol. 11, No. 5, 2022, 29-34

TRAVELLING SALESMAN PROBLEM MODELLING
BY MIXED INTEGER LINEAR PROGRAMMING OF PYTHON (MIP)

Pham My Hanh
An Giang University, Vietnam National University, Ho Chi Minh City, Vietham
Email: pmhanh@agu.edu.vn

Avrticle history
Received: 14/3/2022; Received in revised from: 22/6/2022; Accepted: 14/7/2022

Abstract

A famous travelling salesman problem, appearing simple to state but complex to solve, has been
widely investigated and various algorithms have been proposed. In this article, mixed integer linear
programming of python (MIP) is used to model this problem with varying input data. The result shows
that with small input data the modelling code of MIP executing quickly and converging to optimal value,
while large scale input data require plenty of computation time; thereby algorithm improvement as well as
parallel implementation are suggested.

Keywords: Mixed integer linear programming, python, travelling salesman problem.

MO PHONG BAI TOAN NGUOI BAN HANG BANG QUY HOACH
TUYEN TINH HON HOP NGUYEN (MIP) CUA PYTHON
Pham My Hanh
Truong Pai hoc An Giang, Pai hoc Quoc gia Thanh phé Ho Chi Minh, Viét Nam
Email: pmhanh@agu.edu.vn
Lich sir bai bao
Ngay nhdn: 14/3/2022; Ngay nhdn chinh swa: 22/6/2022; Ngay duyét dang: 14/7/2022

Toém tit

Bai todn nguwoi ban hang la mét bai todn noi tiéng vi né dwoc trinh bay don gidn nhwng 16i gidi thi
that phitc tap. Bai toan ndy da thu hit sy nghién ciu cua dong dao nha khoa hoc va nhzéu thudt toan da
dwoe dé xuat. T) rong bai viét nay, tdc gia sir dung phan mém MIP (quy hoach tuyén tinh trén tdp so
nguyén) dugc viét boi ngén ngit ldp trinh python dé gidi quyét bai todn véi cdc kich c0 khac nhau cia div
liéu dau vao. Két qua cho thay doi véi dir liéu nhé thi thudt todn héi tu khd nhanh vé gia tri 16i uu, tuy
nhién voi dir liéu dau vao I6n, khoi lwong bucc tinh nhiéu, can sy cdi tién vé mat thudt toan va ap dung
tuy chon tinh toan song song.

Tir khéa: Bai todn nguoi ban hang, quy hoach tuyén tinh hon hop nguyén, python.

DOI: https://doi.org/10.52714/dthu.11.5.2022.977
Cite: Pham, M. H. (2022). Travelling salesman problem modelling by mixed integer linear programming of python (MIP).
Dong Thap University Journal of Science, 11(5), 29-34. https://doi.org/10.52714/dthu.11.5.2022.977.

29

https://doi.org/10.52714/dthu.11.5.2022.977
https://doi.org/10.52714/dthu.11.5.2022.977

Natural Sciences issue

1. Introduction

The famous travelling salesman problem
(TSP) can be stated simply that a salesman starting
at his home city wants to visit to other n-1 different
cities all at once and return back to his original
position. He knows the distance between two
arbitrary cities, so which path he should follow to
achieve the shortest distance tour in which sub-
tours are not allowed. This is a compounded
problem that has many practical applications,
attracting numerous researchers’ interest so far. In
addition, some following practical applications of
this problem can be listed, for instance shipping
company has to figure out an optimization route
when delivering goods to customers at different
locations in order to save time and fuel cost; a
school bus driver has to consider the most
appropriate way to pick up pupils; an airline has to
set up commercial and sufficient flight route
throughout n cities... TSP is also a particular case
of travelling purchaser and vehicle routing.

In graph theory, this problem leads to finding
the Hamiltonian cycle through n vertices. The
graph presents here is a weight graph with n cities
presented by n vertices and the edge connects two
vertices having weight, which denotes the distance
between two cities. Two versions of this problem
are asymmetric TSP and symmetric TSP,
depending on whether the graph is digraph or
simple graph. This problem has been proved NP-
complete as n grows to infinity, where the

computation iterations needed might reach 2". This
problem may not have exact optimal solution but
feasible ones (see Dantzig, 1954; Hoffman et al.,
2013 for details). Thereby, many heuristics and
exact algorithms have been proposed to find
feasible solutions, especially linear programming is
deeply concerned.

In linear programming model, simplex
algorithm has long been used; however if the input
values are integer, the model will be more
complicated and subdivided into three following
major types:

+ Integer model has its decision variables
belong to integer set.

+ Binary integer model whose decision
variables are binary, having value either 0 or 1.

30

+ Mixed integer linear is a linear
programming where its decision variables belong
to both integer and real number sets.

To solve TSP, plenty of heuristic methods
have been investigated so far. Ant colony
optimization methods and its improvement were
presented by Munkres, 1957; Dorigo &
Gambardella, 1997; Chawda & Sureja, 2012.
Meanwhile, nearest neighbour algorithm was
introduced by Dhakal and Chiong, 2008.
Especially, branch and cut algorithm was proposed
by Padberg & Rinaldi (1991) to solve symmetric
TSP by using FORTRAN to find the incidence
vectors of a Hamiltonian cycle. The principle of
this method is firstly solving linear program
without the integer constraint by using the simplex
algorithm to obtain an optimal solution then
applying a cutting plane algorithm to reach all
feasible integer points with have optimal value.

Besides some powerful computing libraries
written in FORTRAN and C++, Python has plenty
of efficient packages applied for modelling and
optimization study. PuLP library was presented in
Mitchell et al. (2011). Pyomo package was
thoroughly described in Hart et al. (2017).
CVXOPT package for convex optimization was
proposed by Diamond et al. (2016). In addition,
Linderoth & Lodi (2010) presented some major
components of mixed integer linear programming
solver of Python. More precisely, python
computational tools have been used by Asani et al.
(2020) to solve TSP by applying the convex-hull
and nearest neighbor heuristic algorithm to
construct a tour technique. As a consequence of the
rapid development of algorithm and software, MIP
(mixed integer linear programming of python) is
one of the recent efficient packages of python used
in optimal computation.

In this article, TSP investigated hereafter is
symmetric, modeled by MIP. The aim of this
article is to present a modelling result of TSP by
different size of the vertex set n, then proposing
some recommendations to use MIP for TSP. More
precisely, in the next section, the general
mathematical formulation of this problem is stated
and an overview of the branch and cut algorithms
as well as MIP basic program and finally modelling
results of TSP are presented.

Dong Thap University Journal of Science, Vol. 11, No. 5, 2022, 29-34

2. Mathematical formulation of TSP, mixed
integer linear programming, branch-and cut
algorithm and modelling results of TSP by MIP

2.1. Mathematical formulation of TSP

The mathematical formulation of symmetric
TSP can be generally presented as follows.

Letnandc;denote the number of cities and
the distance between city i to city j respectively.
Let Abe a set of edge from vertex i to vertex j.

x; =1 if the salesman travels from city i to
city j and x; =0 otherwise.

y; denotes the flow from vertex i to j.

TSP can be formulated as:
> Objective function: Minimize Z C; X -
(i,j)eA

> Constraints:

n
D x;=1(0<j<n) since the salesman has
i=0
i#]

to travel to each city i.

n
D %; =1 (0<i<n) since the salesman must
i=0

leave for another city after visiting j.

n

D N;y; =1i=0,..,nto prevent sub-tours,
where each column of N; denotes the flow variable
y;inarc(i, j).

y; <nx; V(i) eA

y; 20 V(i j) e A

X; € {0,1} (i, j) e A

2.2. Mixed integer linear programming
(MIP) solver and its basic components of python

Mixed integer linear programming (MIP) is an
efficient collection of Python tools to model,
especially for mixed integer optimal problems.
MIP, originally written in modern and typed
Python, works with the Python compiler Pypy.
MIP can solve large-scale problems with more
complicate and computationally intensive methods

like simplex method or the branch-and-cut-method
and their variants.

In general, MIP consists of these following
basic components. Firstly, in the presolving phase,
it detects some necessary changes of the input to
improve the solution process in next phase.
Secondly, cutting plane process strengthens
approximation iterations especially in a convex
hull. Then, branching strategies are established at
either node selection or variable selection. Its two
final stages are primal heuristics and parallel
implementation.

Additionally, a python MIP modelling code
consists of these main parts as follows.

- After inputting data and implementing MIP
packages, an initial step is creating a model, in
which it can be an empty model and minimize or
maximize mode can be selected. More precisely,
TSP problem is used as an example.

model = Model()

- Including variables,

X = [[model.add_var(var_type=BINARY) for j in
V] foriinV]

y = [model.add_var() for i in V]

- Adding objective function,
model.objective = minimize(xsum(c[i][j]*x[i][j] for
iinVforjinV))

- Adding all constraints of the model,

constraint: leave each city only once
foriinV:

model += xsum(x[i][j] forj in V - {i}) ==
constraint: enter each city only once
foriinV:

model += xsum(x[j][i] forj in V - {i}) ==
subtour elimination
for (i, j) in product(V - {0}, V - {0}):

ifil=j:

model += y[i] - (n + D*x[i][j] >= y[j] - n

- Executing the model,

model.optimize()

- Checking if feasible solutions are found and
writing them out the screen,

checking if a solution was found

if model.num_solutions:
out.write(‘route with total distance %g

31

Natural Sciences issue

found: %s' % (model.objective_value, place[0]))
nc=0
while True:

nc = [i for i in V if X[nc][i].x >= 0.99][0]

out.write(' -> %s' % place[nc])
if nc==0:
break
out.write('\n")

After executing MIP, the optimal results can
be some following status.

- Optimal: if the optimal solution is found;

- Feasible: if a feasible solution is acquired
but the program cannot check whether or not this is
an optimal one;

- No solution found: if no solution is achieved;

- Infeasible: If there is no feasible solution
after execution;

- Unbounded: If it lacks constraints;

- Error: If there are some errors occurring
while executing;

Besides, if a truncated execution is performed,
it will stop due to the time limit and no feasible
solution is found.

(Source of MIP)
2.3. The branch-and-cut-method used in MIP

In general, branch and cut algorithm as a
combinatorial optimization method is used to solve
linear programs whose input values or constraints
are restricted to integer set. This algorithm
combines two components which are branch and
bound algorithm and cutting plane technique.

Initially, simplex algorithm is used to solve
the linear program without integer constraints.
When the optimal value is obtained, which might
not be integer value, a cutting plane algorithm is
executed to search for all feasible integer points.
The non-integer solutions play a role as upper
bounds and integer solutions as lower bounds. If
the upper bounds are less than the lower, then one
node can be pruned. When solving the linear
programming relaxations, additional cutting planes
may be generated. These cutting planes can be
either global cuts or local cuts, then the branch and
bound part of the algorithm is selected. During this
process, the algorithm searches for all candidate
solutions of the feasible space. The set of candidate
solution forms a rooted tree, and the algorithm

32

explores the branches of the tree. Obviously, the
tree is a subset of the solution set. During the
search of the branches of tree, the candidate
solution can be discarded if it does not provide a
better solution than the previous obtained one. The
algorithm for maximization objective function can
be briefly stated as follows.

1) Set up list of active problems denoted by L.
Initially assuming that the solution x" =null and
objective value v’ = —o,

2) While L is not empty, select or remove the
gueued problems.

i) Solve the linear programming relaxation of
the problem.

ii) If the solution is infeasible, go back to 2)
(while loop), otherwise to denote the solution by x
and objective value by v.

iii) If v<v"then go back to 2).

iv) If x is an integer then v'=v,x"=x
Move to 2).

v) If desired solution is found, then searching
for the cutting plane violated by x. If they are
found, then add them to the linear programming
relaxation and return to 2.i.

vi) Branching and partitioning the problem
into new problem with restricted feasible regions.
Adding these to L and return 2).

3) Returning the solution x* and the objective
value V.

Source Wikipedia.org

2.4. Modelling results of TSP by MIP and
some remarks

In this article, the source data of TSP
(retrieved from
https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp
html) is selected and MIP is applied to model
symmetric TSP with various size of vertex set.
The smallest input data is 5 vertices and the
largest is 26 vertices. The other maximal size TSP
data of this link is 42 vertices and 48 vertices or
more are not chosen because of the limit of
computational equipment.

Let denote M; the city i of the travelling route.
It can be also considered as a vertex i in a simple
graph with n vertices when modelling. In addition,

Dong Thap University Journal of Science, Vol. 11, No. 5, 2022, 29-34

the vertex My is the starting point of the salesman’s
journey. The modelling purpose is to find a
Hamiltonian cycle through n wvertices. In this
context, TSP is modeled by python 3.9, with
personal computer Intel(R) Core(TM) i3-7100U
CPU, ram 4.00GB. The obtained results are
as follows.

Table 1. Modelling results of Travelling salesman
problem by MIP

Vertices | Optimal
set (n) value

5 19 M, > M, >

CPU time
(seconds)

0.01

Routes

15 291 0.68

17 2085 4.59

26 937 6.75

From Table 1 for symmetric TSP problem,
where the graph has a small number of nodes, the
model executes perfectly and optimal solution is
found. The optimal routes and the shortest
travelling distance are obtained. However,
whenever the size of vertex set increases, the

computation iterations needed rise rapidly, since
TSP is the NP-complete problem. Thereby, for
problem with large input data, it is suggested to use
parallel implementation and to improve the branch
and cut algorithm.

3. Conclusion

In short, this article has presented some
modelling results of symmetric TSP problems. The
results show the efficiency of the code and
algorithm especially with small scale input data.
However, TSP is NP-complete problem, the
modelling where input value consists of more than
30 cities executes with huge computational cost,
which requires a sufficient improvement of branch
and cut algorithm as well as using parallel
implementation. For further study, some
improvement of this MIP code can be applied for
asymmetric TSP problem. Besides, the branch and
cut algorithm should be developed when input data
is more than 30 cities.

References

Asani, E. O., Okeyinka, A. E., & Adebiyi, A. A.
(2020). A construction tour technique for
solving the travelling salesman problem based
on convex hull and nearest neighbour
heuristics. In 2020 International Conference
in Mathematics, Computer Engineering and
Computer Science (ICMCECS) IEEE, 1-4.

Chawda, B. V., & Sureja, N. M. (2012). An ACO

approach to solve a variant of
TSP. International Journal of Advance
Research in Computer Engineering and

Technology, 1(5), 222-226.

Dantzig, G., Fulkerson, R., & Johnson, S. (1954).
Solution of a large-scale traveling-salesman
problem. Journal of the Operations Research
Society of America, 2(4), 393-410.

Dhakal, S., & Chiong, R. (2008, August). A hybrid
nearest neighbour and progressive improvement
approach for Travelling Salesman Problem.
In 2008 International ~ Symposium on
Information Technology. IEEE, 1, 1-4.

Diamond, S., & Boyd, S. (2016). CVXPY: A
Python-embedded modeling language for
convex optimization. The Journal of Machine
Learning Research, 17(1), 2909-2913.

33

Natural Sciences issue

Dorigo, M., & Gambardella, L. M. (1997). Ant
colonies for the travelling salesman
problem. Biosystems, 43(2), 73-81.

Hart, W. E., Laird, C. D., Watson, J. P., Woodruff,
D. L., Hackebeil, G. A., Nicholson, B. L., &

Siirola, J. D. (2017). Pyomo-optimization
modeling in python (Vol. 67). Berlin:
Springer.

Hoffman, K. L., Padberg, M., & Rinaldi, G. (2013).
Traveling salesman problem. Encyclopedia of
operations research and management
science, 1, 1573-1578.

Liberti, L., & Maculan, N. (Eds.). (2006). Global
optimization: from theory to
implementation (Vol. 84). Springer Science &
Business Media.

Linderoth, J. T., & Lodi, A. (2010). MILP
software. Wiley encyclopedia of operations

34

research and management science, 5, 3239-
3248.

Mitchell, S., OSullivan, M., & Dunning, I. (2011).
PuLP: a linear programming toolkit for
python. The University of Auckland,
Auckland, New Zealand, 65. Retrieved from
https://www.dit.uoi.gr/e-
class/modules/document/file.php/216/PAPER
S/2011.%20PuLP%?20-
%20A%20Linear%20Programming%20Toolk
it%20for%20Python.pdf

Munkres, J. (1957). Algorithms for the assignment
and transportation problems. Journal of the
Society for Industrial and Applied
Mathematics, 5(1), 32-38.

Padberg, M., & Rinaldi, G. (1991). A branch-and-
cut algorithm for the resolution of large-scale
symmetric traveling salesman
problems. SIAM Review, 33(1), 60-100.

https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf
https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf
https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf
https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf
https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf

