
Dong Thap University Journal of Science, Vol. 11, No. 5, 2022, 29-34

29

TRAVELLING SALESMAN PROBLEM MODELLING

BY MIXED INTEGER LINEAR PROGRAMMING OF PYTHON (MIP)

Pham My Hanh

An Giang University, Vietnam National University, Ho Chi Minh City, Vietnam

Email: pmhanh@agu.edu.vn

Article history

Received: 14/3/2022; Received in revised from: 22/6/2022; Accepted: 14/7/2022

Abstract

A famous travelling salesman problem, appearing simple to state but complex to solve, has been

widely investigated and various algorithms have been proposed. In this article, mixed integer linear

programming of python (MIP) is used to model this problem with varying input data. The result shows

that with small input data the modelling code of MIP executing quickly and converging to optimal value,

while large scale input data require plenty of computation time; thereby algorithm improvement as well as

parallel implementation are suggested.

Keywords: Mixed integer linear programming, python, travelling salesman problem.

--

MÔ PHỎNG BÀI TOÁN NGƯỜI BÁN HÀNG BẰNG QUY HOẠCH

TUYẾN TÍNH HỖN HỢP NGUYÊN (MIP) CỦA PYTHON

Phạm Mỹ Hạnh

Trường Đại học An Giang, Đại học Quốc gia Thành phố Hồ Chí Minh, Việt Nam

Email: pmhanh@agu.edu.vn

Lịch sử bài báo

Ngày nhận: 14/3/2022; Ngày nhận chỉnh sửa: 22/6/2022; Ngày duyệt đăng: 14/7/2022

Tóm tắt

Bài toán người bán hàng là một bài toán nổi tiếng vì nó được trình bày đơn giản nhưng lời giải thì

thật phức tạp. Bài toán này đã thu hút sự nghiên cứu của đông đảo nhà khoa học và nhiều thuật toán đã

được đề xuất. Trong bài viết này, tác giả sử dụng phần mềm MIP (quy hoạch tuyến tính trên tập số

nguyên) được viết bởi ngôn ngữ lập trình python để giải quyết bài toán với các kích cỡ khác nhau của dữ

liệu đầu vào. Kết quả cho thấy đối với dữ liệu nhỏ thì thuật toán hội tụ khá nhanh về giá trị tối ưu, tuy

nhiên với dữ liệu đầu vào lớn, khối lượng bước tính nhiều, cần sự cải tiến về mặt thuật toán và áp dụng

tùy chọn tính toán song song.

Từ khóa: Bài toán người bán hàng, quy hoạch tuyến tính hỗn hợp nguyên, python.

DOI: https://doi.org/10.52714/dthu.11.5.2022.977

Cite: Pham, M. H. (2022). Travelling salesman problem modelling by mixed integer linear programming of python (MIP).

Dong Thap University Journal of Science, 11(5), 29-34. https://doi.org/10.52714/dthu.11.5.2022.977.

https://doi.org/10.52714/dthu.11.5.2022.977
https://doi.org/10.52714/dthu.11.5.2022.977

Natural Sciences issue

30

1. Introduction

The famous travelling salesman problem

(TSP) can be stated simply that a salesman starting

at his home city wants to visit to other n-1 different

cities all at once and return back to his original

position. He knows the distance between two

arbitrary cities, so which path he should follow to

achieve the shortest distance tour in which sub-

tours are not allowed. This is a compounded

problem that has many practical applications,

attracting numerous researchers’ interest so far. In

addition, some following practical applications of

this problem can be listed, for instance shipping

company has to figure out an optimization route

when delivering goods to customers at different

locations in order to save time and fuel cost; a

school bus driver has to consider the most

appropriate way to pick up pupils; an airline has to

set up commercial and sufficient flight route

throughout n cities… TSP is also a particular case

of travelling purchaser and vehicle routing.

In graph theory, this problem leads to finding

the Hamiltonian cycle through n vertices. The

graph presents here is a weight graph with n cities

presented by n vertices and the edge connects two

vertices having weight, which denotes the distance

between two cities. Two versions of this problem

are asymmetric TSP and symmetric TSP,

depending on whether the graph is digraph or

simple graph. This problem has been proved NP-

complete as n grows to infinity, where the

computation iterations needed might reach 2 .n This

problem may not have exact optimal solution but

feasible ones (see Dantzig, 1954; Hoffman et al.,

2013 for details). Thereby, many heuristics and

exact algorithms have been proposed to find

feasible solutions, especially linear programming is

deeply concerned.

In linear programming model, simplex

algorithm has long been used; however if the input

values are integer, the model will be more

complicated and subdivided into three following

major types:

+ Integer model has its decision variables

belong to integer set.

+ Binary integer model whose decision

variables are binary, having value either 0 or 1.

+ Mixed integer linear is a linear

programming where its decision variables belong

to both integer and real number sets.

To solve TSP, plenty of heuristic methods

have been investigated so far. Ant colony

optimization methods and its improvement were

presented by Munkres, 1957; Dorigo &

Gambardella, 1997; Chawda & Sureja, 2012.

Meanwhile, nearest neighbour algorithm was

introduced by Dhakal and Chiong, 2008.

Especially, branch and cut algorithm was proposed

by Padberg & Rinaldi (1991) to solve symmetric

TSP by using FORTRAN to find the incidence

vectors of a Hamiltonian cycle. The principle of

this method is firstly solving linear program

without the integer constraint by using the simplex

algorithm to obtain an optimal solution then

applying a cutting plane algorithm to reach all

feasible integer points with have optimal value.

Besides some powerful computing libraries

written in FORTRAN and C++, Python has plenty

of efficient packages applied for modelling and

optimization study. PuLP library was presented in

Mitchell et al. (2011). Pyomo package was

thoroughly described in Hart et al. (2017).

CVXOPT package for convex optimization was

proposed by Diamond et al. (2016). In addition,

Linderoth & Lodi (2010) presented some major

components of mixed integer linear programming

solver of Python. More precisely, python

computational tools have been used by Asani et al.

(2020) to solve TSP by applying the convex-hull

and nearest neighbor heuristic algorithm to

construct a tour technique. As a consequence of the

rapid development of algorithm and software, MIP

(mixed integer linear programming of python) is

one of the recent efficient packages of python used

in optimal computation.

In this article, TSP investigated hereafter is

symmetric, modeled by MIP. The aim of this

article is to present a modelling result of TSP by

different size of the vertex set n, then proposing

some recommendations to use MIP for TSP. More

precisely, in the next section, the general

mathematical formulation of this problem is stated

and an overview of the branch and cut algorithms

as well as MIP basic program and finally modelling

results of TSP are presented.

 Dong Thap University Journal of Science, Vol. 11, No. 5, 2022, 29-34

31

2. Mathematical formulation of TSP, mixed

integer linear programming, branch-and cut

algorithm and modelling results of TSP by MIP

2.1. Mathematical formulation of TSP

The mathematical formulation of symmetric

TSP can be generally presented as follows.

Let n and ijc denote the number of cities and

the distance between city i to city j respectively.

Let A be a set of edge from vertex i to vertex .j

1ijx 

if the salesman travels from city i to

city j and 0ijx 

otherwise.

ijy denotes the flow from vertex i to .j

TSP can be formulated as:

 Objective function: Minimize
(,)

.ij ij

i j A

c x




 Constraints:

0

1 (0)
n

ij

i
i j

x j n



   since the salesman has

to travel to each city i.

0

1 (0)
n

ij

j
j i

x i n



   since the salesman must

leave for another city after visiting j.

0

1, 0,...,
n

ij ij

j
i j

N y i n



  to prevent sub-tours,

where each column of ijN denotes the flow variable

ijy in arc (,).i j

 

(,) ,

0 (,) ,

0,1 (,) .

ij ij

ij

ij

y nx i j A

y i j A

x i j A

  

  

  

2.2. Mixed integer linear programming

(MIP) solver and its basic components of python

Mixed integer linear programming (MIP) is an

efficient collection of Python tools to model,

especially for mixed integer optimal problems.

MIP, originally written in modern and typed

Python, works with the Python compiler Pypy.

MIP can solve large-scale problems with more

complicate and computationally intensive methods

like simplex method or the branch-and-cut-method

and their variants.

In general, MIP consists of these following

basic components. Firstly, in the presolving phase,

it detects some necessary changes of the input to

improve the solution process in next phase.

Secondly, cutting plane process strengthens

approximation iterations especially in a convex

hull. Then, branching strategies are established at

either node selection or variable selection. Its two

final stages are primal heuristics and parallel

implementation.

Additionally, a python MIP modelling code

consists of these main parts as follows.

- After inputting data and implementing MIP

packages, an initial step is creating a model, in

which it can be an empty model and minimize or

maximize mode can be selected. More precisely,

TSP problem is used as an example.

model = Model()

- Including variables,

x = [[model.add_var(var_type=BINARY) for j in

V] for i in V]

y = [model.add_var() for i in V]

- Adding objective function,

model.objective = minimize(xsum(c[i][j]*x[i][j] for

i in V for j in V))

- Adding all constraints of the model,

constraint: leave each city only once

for i in V:

 model += xsum(x[i][j] for j in V - {i}) == 1

constraint: enter each city only once

for i in V:

 model += xsum(x[j][i] for j in V - {i}) == 1

subtour elimination

for (i, j) in product(V - {0}, V - {0}):

 if i != j:

 model += y[i] - (n + 1)*x[i][j] >= y[j] - n

- Executing the model,

model.optimize()

- Checking if feasible solutions are found and

writing them out the screen,

checking if a solution was found

if model.num_solutions:

 out.write('route with total distance %g

Natural Sciences issue

32

found: %s' % (model.objective_value, place[0]))

nc = 0

while True:

 nc = [i for i in V if x[nc][i].x >= 0.99][0]

 out.write(' -> %s' % place[nc])

 if nc == 0:

 break

out.write('\n')

After executing MIP, the optimal results can

be some following status.

- Optimal: if the optimal solution is found;

- Feasible: if a feasible solution is acquired

but the program cannot check whether or not this is

an optimal one;

- No solution found: if no solution is achieved;

- Infeasible: If there is no feasible solution

after execution;

- Unbounded: If it lacks constraints;

- Error: If there are some errors occurring

while executing;

Besides, if a truncated execution is performed,

it will stop due to the time limit and no feasible

solution is found.

(Source of MIP)

2.3. The branch-and-cut-method used in MIP

In general, branch and cut algorithm as a

combinatorial optimization method is used to solve

linear programs whose input values or constraints

are restricted to integer set. This algorithm

combines two components which are branch and

bound algorithm and cutting plane technique.

Initially, simplex algorithm is used to solve

the linear program without integer constraints.

When the optimal value is obtained, which might

not be integer value, a cutting plane algorithm is

executed to search for all feasible integer points.

The non-integer solutions play a role as upper

bounds and integer solutions as lower bounds. If

the upper bounds are less than the lower, then one

node can be pruned. When solving the linear

programming relaxations, additional cutting planes

may be generated. These cutting planes can be

either global cuts or local cuts, then the branch and

bound part of the algorithm is selected. During this

process, the algorithm searches for all candidate

solutions of the feasible space. The set of candidate

solution forms a rooted tree, and the algorithm

explores the branches of the tree. Obviously, the

tree is a subset of the solution set. During the

search of the branches of tree, the candidate

solution can be discarded if it does not provide a

better solution than the previous obtained one. The

algorithm for maximization objective function can

be briefly stated as follows.

1) Set up list of active problems denoted by L.

Initially assuming that the solution x null  and

objective value * .v  

2) While L is not empty, select or remove the

queued problems.

i) Solve the linear programming relaxation of

the problem.

ii) If the solution is infeasible, go back to 2)

(while loop), otherwise to denote the solution by x

and objective value by .v

iii) If v v then go back to 2).

iv) If x is an integer then , .v v x x  

Move to 2).

v) If desired solution is found, then searching

for the cutting plane violated by .x If they are

found, then add them to the linear programming

relaxation and return to 2.i.

vi) Branching and partitioning the problem

into new problem with restricted feasible regions.

Adding these to L and return 2).

3) Returning the solution x and the objective

value .v

Source Wikipedia.org

2.4. Modelling results of TSP by MIP and

some remarks

In this article, the source data of TSP

(retrieved from

https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp

.html) is selected and MIP is applied to model

symmetric TSP with various size of vertex set.

The smallest input data is 5 vertices and the

largest is 26 vertices. The other maximal size TSP

data of this link is 42 vertices and 48 vertices or

more are not chosen because of the limit of

computational equipment.

Let denote Mi the city i of the travelling route.

It can be also considered as a vertex i in a simple

graph with n vertices when modelling. In addition,

 Dong Thap University Journal of Science, Vol. 11, No. 5, 2022, 29-34

33

the vertex M1 is the starting point of the salesman’s

journey. The modelling purpose is to find a

Hamiltonian cycle through n vertices. In this

context, TSP is modeled by python 3.9, with

personal computer Intel(R) Core(TM) i3-7100U

CPU, ram 4.00GB. The obtained results are

as follows.

Table 1. Modelling results of Travelling salesman

problem by MIP

Vertices

set (n)

Optimal

value

Routes CPU time

(seconds)

5 19 M1 -> M3 ->

M2 -> M5 ->

M4 -> M1

0.01

15 291 M1 -> M11 ->

M4 -> M6 ->

M8 -> M10 ->

M14 -> M12 ->

M3 -> M7 ->

M5 -> M9 ->

M15 -> M2 ->

M13 -> M1

0.68

17 2085 M1 -> M16 ->

M12 -> M9 ->

M5 -> M2 ->

M10 -> M11 ->

M3 -> M15 ->

M14 -> M17 ->

M6 -> M8 ->

M7 -> M13 ->

M4 -> M1

4.59

26 937 M1 -> M25 ->

M24 -> M23 ->

M26 -> M22 ->

M21 -> M17 ->

M18 -> M20 ->

M19 -> M16 ->

M11 -> M13 ->

M12 -> M15 ->

M14 -> M10 ->

M9 -> M8 ->

M7 -> M5 ->

M6 -> M4 ->

M3 -> M2 ->

M1

6.75

From Table 1 for symmetric TSP problem,

where the graph has a small number of nodes, the

model executes perfectly and optimal solution is

found. The optimal routes and the shortest

travelling distance are obtained. However,

whenever the size of vertex set increases, the

computation iterations needed rise rapidly, since

TSP is the NP-complete problem. Thereby, for

problem with large input data, it is suggested to use

parallel implementation and to improve the branch

and cut algorithm.

3. Conclusion

In short, this article has presented some

modelling results of symmetric TSP problems. The

results show the efficiency of the code and

algorithm especially with small scale input data.

However, TSP is NP-complete problem, the

modelling where input value consists of more than

30 cities executes with huge computational cost,

which requires a sufficient improvement of branch

and cut algorithm as well as using parallel

implementation. For further study, some

improvement of this MIP code can be applied for

asymmetric TSP problem. Besides, the branch and

cut algorithm should be developed when input data

is more than 30 cities.

References

Asani, E. O., Okeyinka, A. E., & Adebiyi, A. A.

(2020). A construction tour technique for

solving the travelling salesman problem based

on convex hull and nearest neighbour

heuristics. In 2020 International Conference

in Mathematics, Computer Engineering and

Computer Science (ICMCECS) IEEE, 1-4.

Chawda, B. V., & Sureja, N. M. (2012). An ACO

approach to solve a variant of

TSP. International Journal of Advance

Research in Computer Engineering and

Technology, 1(5), 222-226.

Dantzig, G., Fulkerson, R., & Johnson, S. (1954).

Solution of a large-scale traveling-salesman

problem. Journal of the Operations Research

Society of America, 2(4), 393-410.

Dhakal, S., & Chiong, R. (2008, August). A hybrid

nearest neighbour and progressive improvement

approach for Travelling Salesman Problem.

In 2008 International Symposium on

Information Technology. IEEE, 1, 1-4.

Diamond, S., & Boyd, S. (2016). CVXPY: A

Python-embedded modeling language for

convex optimization. The Journal of Machine

Learning Research, 17(1), 2909-2913.

Natural Sciences issue

34

Dorigo, M., & Gambardella, L. M. (1997). Ant

colonies for the travelling salesman

problem. Biosystems, 43(2), 73-81.

Hart, W. E., Laird, C. D., Watson, J. P., Woodruff,

D. L., Hackebeil, G. A., Nicholson, B. L., &

Siirola, J. D. (2017). Pyomo-optimization

modeling in python (Vol. 67). Berlin:

Springer.

Hoffman, K. L., Padberg, M., & Rinaldi, G. (2013).

Traveling salesman problem. Encyclopedia of

operations research and management

science, 1, 1573-1578.

Liberti, L., & Maculan, N. (Eds.). (2006). Global

optimization: from theory to

implementation (Vol. 84). Springer Science &

Business Media.

Linderoth, J. T., & Lodi, A. (2010). MILP

software. Wiley encyclopedia of operations

research and management science, 5, 3239-

3248.

Mitchell, S., OSullivan, M., & Dunning, I. (2011).

PuLP: a linear programming toolkit for

python. The University of Auckland,

Auckland, New Zealand, 65. Retrieved from

https://www.dit.uoi.gr/e-

class/modules/document/file.php/216/PAPER

S/2011.%20PuLP%20-

%20A%20Linear%20Programming%20Toolk

it%20for%20Python.pdf

Munkres, J. (1957). Algorithms for the assignment

and transportation problems. Journal of the

Society for Industrial and Applied

Mathematics, 5(1), 32-38.

Padberg, M., & Rinaldi, G. (1991). A branch-and-

cut algorithm for the resolution of large-scale

symmetric traveling salesman

problems. SIAM Review, 33(1), 60-100.

https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf
https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf
https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf
https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf
https://www.dit.uoi.gr/e-class/modules/document/file.php/216/PAPERS/2011.%20PuLP%20-%20A%20Linear%20Programming%20Toolkit%20for%20Python.pdf

