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Abstract

A famous travelling salesman problem, appearing simple to state but complex to solve, has been

widely investigated and various algorithms have been proposed. In this article, mixed integer linear

programming of python (MIP) is used to model this problem with varying input data. The result shows

that with small input data the modelling code of MIP executing quickly and converging to optimal value,

while large scale input data require plenty of computation time; thereby algorithm improvement as well as

parallel implementation are suggested.
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Tóm tắt

Bài toán người bán hàng là một bài toán nổi tiếng vì nó được trình bày đơn giản nhưng lời giải thì

thật phức tạp. Bài toán này đã thu hút sự nghiên cứu của đông đảo nhà khoa học và nhiều thuật toán đã

được đề xuất. Trong bài viết này, tác giả sử dụng phần mềm MIP (quy hoạch tuyến tính trên tập số

nguyên) được viết bởi ngôn ngữ lập trình python để giải quyết bài toán với các kích cỡ khác nhau của dữ

liệu đầu vào. Kết quả cho thấy đối với dữ liệu nhỏ thì thuật toán hội tụ khá nhanh về giá trị tối ưu, tuy

nhiên với dữ liệu đầu vào lớn, khối lượng bước tính nhiều, cần sự cải tiến về mặt thuật toán và áp dụng

tùy chọn tính toán song song.

Từ khóa: Bài toán người bán hàng, quy hoạch tuyến tính hỗn hợp nguyên, python.
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1. Introduction 

The famous travelling salesman problem 

(TSP) can be stated simply that a salesman starting 

at his home city wants to visit to other n-1 different 

cities all at once and return back to his original 

position. He knows the distance between two 

arbitrary cities, so which path he should follow to 

achieve the shortest distance tour in which sub-

tours are not allowed. This is a compounded 

problem that has many practical applications, 

attracting numerous researchers’ interest so far. In 

addition, some following practical applications of 

this problem can be listed, for instance shipping 

company has to figure out an optimization route 

when delivering goods to customers at different 

locations in order to save time and fuel cost; a 

school bus driver has to consider the most 

appropriate way to pick up pupils; an airline has to 

set up commercial and sufficient flight route 

throughout n cities… TSP is also a particular case 

of travelling purchaser and vehicle routing. 

In graph theory, this problem leads to finding 

the Hamiltonian cycle through n vertices. The 

graph presents here is a weight graph with n cities 

presented by n vertices and the edge connects two 

vertices having weight, which denotes the distance 

between two cities. Two versions of this problem 

are asymmetric TSP and symmetric TSP, 

depending on whether the graph is digraph or 

simple graph. This problem has been proved NP-

complete as n grows to infinity, where the 

computation iterations needed might reach 2 .n This 

problem may not have exact optimal solution but 

feasible ones (see Dantzig, 1954; Hoffman et al., 

2013 for details). Thereby, many heuristics and 

exact algorithms have been proposed to find 

feasible solutions, especially linear programming is 

deeply concerned.   

In linear programming model, simplex 

algorithm has long been used; however if the input 

values are integer, the model will be more 

complicated and subdivided into three following 

major types:  

+ Integer model has its decision variables 

belong to integer set. 

+ Binary integer model whose decision 

variables are binary, having value either 0 or 1.  

+ Mixed integer linear is a linear 

programming where its decision variables belong 

to both integer and real number sets.  

To solve TSP, plenty of heuristic methods 

have been investigated so far. Ant colony 

optimization methods and its improvement were 

presented by Munkres, 1957; Dorigo & 

Gambardella, 1997; Chawda & Sureja, 2012. 

Meanwhile, nearest neighbour algorithm was 

introduced by Dhakal and Chiong, 2008. 

Especially, branch and cut algorithm was proposed 

by Padberg & Rinaldi (1991) to solve symmetric 

TSP by using FORTRAN to find the incidence 

vectors of a Hamiltonian cycle. The principle of 

this method is firstly solving linear program 

without the integer constraint by using the simplex 

algorithm to obtain an optimal solution then 

applying a cutting plane algorithm to reach all 

feasible integer points with have optimal value. 

Besides some powerful computing libraries 

written in FORTRAN and C++, Python has plenty 

of efficient packages applied for modelling and 

optimization study. PuLP library was presented in 

Mitchell et al. (2011). Pyomo package was 

thoroughly described in Hart et al. (2017). 

CVXOPT package for convex optimization was 

proposed by Diamond et al. (2016).  In addition, 

Linderoth & Lodi (2010) presented some major 

components of mixed integer linear programming 

solver of Python. More precisely, python 

computational tools have been used by Asani et al. 

(2020) to solve TSP by applying the convex-hull 

and nearest neighbor heuristic algorithm to 

construct a tour technique. As a consequence of the 

rapid development of algorithm and software, MIP 

(mixed integer linear programming of python) is 

one of the recent efficient packages of python used 

in optimal computation.  

In this article, TSP investigated hereafter is 

symmetric, modeled by MIP. The aim of this 

article is to present a modelling result of TSP by 

different size of the vertex set n, then proposing 

some recommendations to use MIP for TSP. More 

precisely, in the next section, the general 

mathematical formulation of this problem is stated 

and an overview of the branch and cut algorithms 

as well as MIP basic program and finally modelling 

results of TSP are presented.  
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2. Mathematical formulation of TSP, mixed 

integer linear programming, branch-and cut 

algorithm and modelling results of TSP by MIP 

2.1. Mathematical formulation of TSP 

The mathematical formulation of symmetric 

TSP can be generally presented as follows.  

Let n and ijc denote the number of cities and 

the distance between city i to city j  respectively. 

Let A be a set of edge from vertex i  to vertex .j

 
1ijx 

 
if the salesman travels from city i  to 

city j  and 0ijx 

 

otherwise.  

ijy  denotes the flow from vertex i  to .j  

TSP can be formulated as: 
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2.2. Mixed integer linear programming 

(MIP) solver and its basic components of  python 

Mixed integer linear programming (MIP) is an 

efficient collection of Python tools to model, 

especially for mixed integer optimal problems. 

MIP, originally written in modern and typed 

Python, works with the Python compiler Pypy. 

MIP can solve large-scale problems with more 

complicate and computationally intensive methods 

like simplex method or the branch-and-cut-method 

and their variants. 

In general, MIP consists of these following 

basic components. Firstly, in the presolving phase, 

it detects some necessary changes of the input to 

improve the solution process in next phase. 

Secondly, cutting plane process strengthens 

approximation iterations especially in a convex 

hull. Then, branching strategies are established at 

either node selection or variable selection. Its two 

final stages are primal heuristics and parallel 

implementation.   

Additionally, a python MIP modelling code 

consists of these main parts as follows. 

- After inputting data and implementing MIP 

packages, an initial step is creating a model, in 

which it can be an empty model and minimize or 

maximize mode can be selected. More precisely, 

TSP problem is used as an example. 

model = Model() 

- Including variables,  

x = [[model.add_var(var_type=BINARY) for j in 

V] for i in V] 

y = [model.add_var() for i in V] 

- Adding objective function, 

model.objective = minimize(xsum(c[i][j]*x[i][j] for 

i in V for j in V)) 

- Adding all constraints of the model, 

# constraint: leave each city only once 

for i in V: 

    model += xsum(x[i][j] for j in V - {i}) == 1 

# constraint: enter each city only once 

for i in V: 

    model += xsum(x[j][i] for j in V - {i}) == 1 

# subtour elimination 

for (i, j) in product(V - {0}, V - {0}): 

    if i != j: 

        model += y[i] - (n + 1)*x[i][j] >= y[j] - n 

- Executing the model, 

model.optimize() 

- Checking if feasible solutions are found and 

writing them out the screen, 

# checking if a solution was found 

if model.num_solutions: 

    out.write('route with total distance %g 
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found: %s' % (model.objective_value, place[0])) 

nc = 0 

while True: 

    nc = [i for i in V if x[nc][i].x >= 0.99][0] 

    out.write(' -> %s' % place[nc]) 

    if nc == 0: 

        break 

out.write('\n') 

After executing MIP, the optimal results can 

be some following status. 

- Optimal: if the optimal solution is found; 

- Feasible: if a feasible solution is acquired 

but the program cannot check whether or not this is 

an optimal one; 

- No solution found: if no solution is achieved; 

- Infeasible: If there is no feasible solution 

after execution; 

- Unbounded: If it lacks constraints; 

- Error: If there are some errors occurring 

while executing;  

Besides, if a truncated execution is performed, 

it will stop due to the time limit and no feasible 

solution is found. 

(Source of MIP) 

2.3. The branch-and-cut-method used in MIP 

In general, branch and cut algorithm as a 

combinatorial optimization method is used to solve 

linear programs whose input values or constraints 

are restricted to integer set. This algorithm 

combines two components which are branch and 

bound algorithm and cutting plane technique.  

Initially, simplex algorithm is used to solve 

the linear program without integer constraints. 

When the optimal value is obtained, which might 

not be integer value, a cutting plane algorithm is 

executed to search for all feasible integer points. 

The non-integer solutions play a role as upper 

bounds and integer solutions as lower bounds. If 

the upper bounds are less than the lower, then one 

node can be pruned. When solving the linear 

programming relaxations, additional cutting planes 

may be generated. These cutting planes can be 

either global cuts or local cuts, then the branch and 

bound part of the algorithm is selected. During this 

process, the algorithm searches for all candidate 

solutions of the feasible space. The set of candidate 

solution forms a rooted tree, and the algorithm 

explores the branches of the tree. Obviously, the 

tree is a subset of the solution set. During the 

search of the branches of tree, the candidate 

solution can be discarded if it does not provide a 

better solution than the previous obtained one. The 

algorithm for maximization objective function can 

be briefly stated as follows. 

1) Set up list of active problems denoted by L. 

Initially assuming that the solution x null   and 

objective value * .v    

2) While L is not empty, select or remove the 

queued problems. 

i) Solve the linear programming relaxation of 

the problem. 

ii) If the solution is infeasible, go back to 2) 

(while loop), otherwise to denote the solution by x

and objective value by .v  

iii)  If v v then go back to 2). 

iv) If x  is an integer then , .v v x x  
  

Move to 2). 

v) If desired solution is found, then searching 

for the cutting plane violated by .x  If they are 

found, then add them to the linear programming 

relaxation and return to 2.i. 

vi) Branching and partitioning the problem 

into new problem with restricted feasible regions. 

Adding these to L and return 2). 

3) Returning the solution x  and the objective 

value .v  

Source Wikipedia.org 

2.4. Modelling results of TSP by MIP and 

some remarks 

In this article, the source data of TSP 

(retrieved from 

https://people.sc.fsu.edu/~jburkardt/datasets/tsp/tsp

.html) is selected and MIP is applied to model 

symmetric TSP with various size of vertex set. 

The smallest input data is 5 vertices and the 

largest is 26 vertices. The other maximal size TSP 

data of this link is 42 vertices and 48 vertices or 

more are not chosen because of the limit of 

computational equipment.  

Let denote Mi the city i of the travelling route. 

It can be also considered as a vertex i in a simple 

graph with n vertices when modelling. In addition, 
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the vertex M1 is the starting point of the salesman’s 

journey. The modelling purpose is to find a 

Hamiltonian cycle through n vertices. In this 

context, TSP is modeled by python 3.9, with 

personal computer Intel(R) Core(TM) i3-7100U 

CPU, ram 4.00GB. The obtained results are          

as follows. 

Table 1. Modelling results of Travelling salesman 

problem by MIP 

Vertices 

set (n) 

Optimal 

value 

Routes CPU time 

(seconds) 

5 19 M1 -> M3 -> 

M2 -> M5 -> 

M4   ->  M1 

0.01 

15 291 M1 -> M11 -> 

M4 -> M6 -> 

M8 -> M10 -> 

M14 -> M12 -> 

M3 -> M7 -> 

M5 -> M9 -> 

M15 -> M2 -> 

M13 -> M1 

0.68 

17 2085  M1 -> M16 -> 

M12 -> M9 -> 

M5 -> M2 -> 

M10 -> M11 -> 

M3 -> M15 -> 

M14 -> M17 -> 

M6 -> M8 -> 

M7  -> M13 -> 

M4  -> M1  

4.59  

26 937 M1 -> M25 -> 

M24 -> M23 -> 

M26 -> M22 -> 

M21 -> M17 -> 

M18 -> M20 -> 

M19 -> M16 -> 

M11 -> M13 -> 

M12 -> M15 -> 

M14 -> M10 -> 

M9 -> M8 -> 

M7 -> M5 -> 

M6 -> M4 -> 

M3 -> M2 -> 

M1 

6.75 

From Table 1 for symmetric TSP problem, 

where the graph has a small number of nodes, the 

model executes perfectly and optimal solution is 

found. The optimal routes and the shortest 

travelling distance are obtained. However, 

whenever the size of vertex set increases, the 

computation iterations needed rise rapidly, since 

TSP is the NP-complete problem. Thereby, for 

problem with large input data, it is suggested to use 

parallel implementation and to improve the branch 

and cut algorithm.  

3. Conclusion 

In short, this article has presented some 

modelling results of symmetric TSP problems. The 

results show the efficiency of the code and 

algorithm especially with small scale input data. 

However, TSP is NP-complete problem, the 

modelling where input value consists of more than 

30 cities executes with huge computational cost, 

which requires a sufficient improvement of branch 

and cut algorithm as well as using parallel 

implementation. For further study, some 

improvement of this MIP code can be applied for 

asymmetric TSP problem. Besides, the branch and 

cut algorithm should be developed when input data 

is more than 30 cities. 
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