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Abstract

The aim of the present paper is to give robust stability based on exponentially stable
switched positive linear systems. Our theoretical analysis shows that if there exists a positive
stable system of all positive subsystems, then a lower bound and upper bound for stability radius
of the switched system under positive affine perturbations are established. In the particular case
of two dimensional switched system, including two switching signals, we obtain a formula of
stability radius. Several examples are provided to illustrate our approach.
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1. Introduction

A switched system is described by a
family of subsystems and a rule that controls
the switching between them. Switched
systems have gained attention from many
scientists since they can be applied in a wide
variety of tasks, including mechanical
engineering, the automotive industry, power
systems, aircraft traffic,c and many other
fields. The books (Liberzon, 2003; Sun & Ge,
2011) contain reports on various theoretical
developments for switched systems as well as
their applications in some of these areas. In
the mathematical setting, such a system, in
the case of a linear continuous-time model,
can be described by a linear time-varying
differential equation of the form

: (1)
WhereX(R:(t)Aéaﬁl)?g%'Afeo KPF R N} 20,
N :={1, 2, ..., N} a given family of N matrices
with elements in K, K=C or R and X is a
set of switching signals o :[0,+%) — N, which
are piecewise constant right-side continuous
functions with points of discontinuity t,

1=1, 2,...satisfying 7= inf(t,., —t)>0.

Among qualitative properties of switched
systems, stability and stabilization play a
pivotal role and have been most widely
investigated. To mention a few, we refer the
reader to monographs (Liberzon, 2003; Sun &
Ge, 2011), survey papers (Lin & Antsaklis,
2009; Shorten et al., 2007), and the references
therein. One of the basic problems in stability
analysis of switched systems is to find
conditions guaranteeing stability/stabilizability
under arbitrary switching. It has been well
established, for instance, that the zero solution
of the switched linear system (1) is
exponentially stable under arbitrary switching
signal o <X if all subsystems

x(t)=Ax(t), t=0,keN (2
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have a common quadratic Lyapunov function
(or QLF, for short) of the formV/(x)=x"Px or

(see Blanchini et al., 2015; Ding et al., 2011) a
common co-positive Lyapunov linear function

of the form V(x) =v'x.

The estimations of stability radii of
switched linear systems and periodically
switched linear systems were introduced in
the paper (Nguyen et al., 2020; Do et al.,
2019). The stability radii of the positive linear
system proposed by Son-Hinrichsen (see
Nguyen et al., 1996) has a real stability radius
equal to the complex stability radius, while
the switched positive linear system interested
by many authors and given conditions stable
(see Blanchini et al., 2015; Ding et al., 2011,
Gurvits et al., 2007; Mason et al., 2007; Le et
al., 2020; Sun., 2016), have studied robust
stability in (Le et al., 2020). However, with an
inevitable limitation, the formula of stability
radius has not been fully studied. In this
paper, we seek to provide a case with a
stability radius.

2. Preliminaries
Let denote R™™, RT™ be a set of all nxm

matrices with elements in R, R respectively.

We adopt the notation A >0 for the case that a
matrix A with entries is non-negative. A non-
negative matrix with at least one positive entry
is a positive matrix, denoted as (A>0). On the
other hand, if all entries of matrix A are
positive, then A is strictly positive (A>0).
Given two matrices A and B, of the same size
A>B,A>B and A>B are synonymous of

A-B>0,A-B>0 and A-B>0, respectively.
Throughout this article, unless otherwise

stated, the norm of a matrix AeK™™ s
understood as its operator norm induced by a

given pair of monotonic vector norms on K"
and K™ that is Il All=max {Il AxIl:ll xll=1}.

nxn

For any matrix AeR
abscissa of A IS

, the spectral
denoted by
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u(A)=max{Rel: 1ec(A)}, where

o(A)={zeC: det(zl ,-A) =0} is the set of
all eigenvalues of A. A matrix AcR™ is
called Hurwitz if and only if x(A)<0. A
matrix AeR™" is called a Metzler matrix if

all off-diagonal elements of A are non-
negative. Consider a linear continuous-time

system in K" the form:
§<(t)=Ax(t); xeK"; t>0. (3)

Assume that the system (3) is Hurwitz
stable that is p(A)<0 and is subjected to

structured affine perturbations of the form:
X(t) = (A+DAE)X(t); xeK"; t >0, (4)

where A eK"™ is unknown disturbance
matrix, DeK™' EeK®™" are given matrices
defining the structured perturbations. We have
the well-known notion of structured stability
radius (Hinrichsen and Pritchard., 1986) which
is defined, for K=R;C, as:

rc (AD;E) = inf{|A|:AeK"™,
A + DAE not Hurwitzstable}. (5)

In particular, as the equation is shown in
(Nguyen Khoa Son and Hinrichsen, 1996), if

AeR™ is a Metzler Hurwitz stable and
DeR?';EcR*", then formula (5) is
computed as follow:
1
r.(ADE) = r,(AD,E) =———. (6
= ( )  ( ) ||EA'1D|| (6)

We repeat the following two theorems
about Metzler matrices.

Theorem 2.1. (Nguyen et al., 1996,
Proposition 1). Suppose thatAeR™ is a
Metzler matrix. Then

(i) (Perron-Frobenius)  u(A) is an

eigenvalue of A, and there exists a non-

negative eigenvector x=0 such that

Ax= u(A)X.
(if) Given a € R, there exists a nonzero
vector X >0 such that Ax > ax if and only if

uA) > a.
(i) (tI_-A)™ exists and is non-negative if
and only if t > u(A).

The following result is immediate from
Theorem 2.1.

Theorem 2.2. Let AeR™ be a
Metzler matrix. Then the following
statements are equivalent:

(i) 4(A) <0;

(i) Ap <0 forsome peRT, p>0;
(iii) A isinvertibleand A™ <0.
The following lemma is reused in that section.

Lemma 2.1 (Do Duc Thuan et al., 2019,
Lemma 2.4). Let «,B,y be given positive
numbers, and
Q::{(x,y)eRZ:2xy+ax+ﬁy—;/20,xZO, yZO}.
Then,

1/aﬁ+2y—# if aff+2y > w2,

min {x+ y}= % if af+2y<w?and w=p>a,

(x,y)eQ

L if aff+2y <w’and w=a > f3,
a

where = max{a, £}.

The following result is immediate from
Lemma 2.2.

Lemma 22. Let «,8 be given
nonnegative numbers, y>0 and

Q::{(x,y)eIRZ:2xy+ax+/3y—7/20,x20, yzO},
set w=max{«, #}. Then,
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a/(Jzﬂ+2;f—#if aﬂ+2y>a)z;a,ﬂ>0,
% if gf+2y<o’and 0=p4>a>0,
Ui aﬂ+2y£a)2 and w=a> >0,

a

]/ .
2.1 ifa=p=0,
y2 Ta=h

ﬁ—%ifﬂ:OandZy—a2>O,

min {x+y}=
(x.y)eQ

\/Z—gifa:Oand27—ﬂ2>O.

Consider a continuous-time switched positive
linear system in R" described by (1). This
ensures that if x(0) =x, belongs to the positive

orthant R", then for any switching signal

o e, the system (1) admits a unique solution
x(t, %, 0), t=0.

Definition 2.1 (Ding et al., 2011,
Definition 2.4). The switched linear system (1)

is said to be positive if x, >0 implies that
X(t,%,0)>0 forall t=0.

Definition 2.2 (Blanchini et al., 2015,
Definition 3.1). The switched positive linear

system (1) is said to be exponentially stable if
there exist real constants M >0 and B>0

such that all the solutions of (1) satisfy

[x(t %, o) < Me ™ [l  (7)
for every x,eR",t>0 and for all switching
signal oeX.

Lemma 2.3 (Ding et al., 2011, Lemma
2.3). The switched positive linear system (1) is
positive if and only if A,, ke N are Metzler
matrices.

Lemma 2.4 (Blanchini et al.,, 2015,
Definition 3.1). Consider a switched positive
linear system described by (1). If there exists

veR?,v>0 such that:

VA, <0, VkeN, (8)
then the positive switched linear system (1) is
exponentially stable.

Lemma 2.5 (Nguyen Khoa Son et al.,
2020, Lemma 2). Consider a switched positive

18

linear system described by (1). If there exists
veR},v>0 such that:

AVv<0, vkeN, (9)
then the switched positive linear system (1) is

exponentially stable. Given Theorem 2.2 (ii),
the preceding result immediately implies.

Corollary 2.1. If there exists a Hurwitz
stable Metzler matrix A, such that:
Ac<A,VvkeN,  (10)

then the switched positive linear system (1) is
exponentially stable for any ceX.

Theorem 2.3. (Ding et al., 2011, Theorem
4.2). Let A =(a)).A,=(a))eR*?, i,j=12
be Metzler and Hurwitz matrices. The
following statements are equivalent.

(i) The switched positive linear system (1)
is exponentially stable.

(i)  The switched positive
subsystems (2) have a  common
copositive Lyapunov function (CLCLF).

(iii) There exists a diagonal matrix P > 0
such that A P+PA, <0 fork =1, 2.

linear
linear

1 2 2 1
i a a
(iv) 311 ";1 >0, 3121 fl > 0.
a12 a22 a12 a22

We prove the following lemma.

Lemma 2.6. Let AeR?*? be Metzler
Hurwitz stable. Then, a; <0,i=12.

Proof. Consider is the determinant

det(A-AD)
_ a, — A a,,
a, a,, — A

=A% - (ay; +ay,)A+ (a8, —a,a,).
Assume det(A-AI) =0, we have

A ,(A)= 8 +ay \/(aﬁ +8)" (a8, —8,8y)
,2 2 - 2

Since A is Metzler Hurwitz stable, then
4.,<0and
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(B, +@y,)° —4(8,8,, —81,8,) = (8, ~8,,)" +4a,8, > 0.

We obtain

A+ =a,+8, <0

A, =88, —a,a, >0

a,+a,+ \,l(aﬂ +a,,)" - 4(3,8,, ~3,a,,) <0
B+ 8y~ (B +8,) ~4(8, -8, <0

(Obviously).

. & +an <0
Equivalently, { 1o .
a18p) > 3178y

Since A is Metzler Hurvitz stable, then
a:LZ 2 01 321 2 01 aila22 _aizazl >0.

a1 +a 0
We have { 11 "2 <Y
a8y >0
This implies a;, <0, a,, <0. The proof is
completed.
3. Stability radius of switched positive
linear systems
In this section, consider a continuous-time

switched positive linear system in R"
described by (1). We assume that the switched
positive linear system (1) is exponentially
stable and the matricesA,, ke Nof positive

subsystems (2) are subjected to affine positive
perturbations of the form:
A, — A=A, +D,AE,, keN, (11)

where D:={D,, D, e R™*},

E={E,, E, eR¥"}, keN are given matrices
defining the structure of the perturbations and
A, eR'¥% keN are unknown disturbances.
Then the perturbed system is described by

X(t) = A,pxt), t20,cex,  (12)

Aa(t) € {Ak +D,AE, A, e R k e N}, t>0.

An important question arising in the
robustness analysis of stability for the nominal
system (1) subjected to parameter perturbations
is how large perturbations A,,keN are
allowable in the perturbed perturbation (12),
without destroying the exponential stability of

the system. To deal with this question, let us
measure the size of perturbations
A=(ALA,, .., Ay) e RYE xR% x| x

N
|4 =2 I

Definition 3.1. If the switched positive
linear system (1) is exponentially stable and is
subjected to affine perturbations of the form
(12). Then its structured stability radius is
defined as:

):=infflA] : A

(AD,8): DAY, R KN,
3o e ¥ such that (12) is not exponentially stable} (14)
where the norm |.|, of perturbations A is
defined by (13). If D,=E,=I, ke N (the case of
unstructured perturbations) then we put
e (A) =1 (A L.

Now, we will use Corollary 2.1 to get a
more explicit formula for computing a lower
bound of the real stability radius r, (A,D,&)

of the switched positive linear systems (1) with
a Metzler Hurwitz stable matrix.

In>an
R

(13)

Theorem 3.1. Assume that the switched
positive linear system (1) is exponentially stable
and is subjected to affine perturbations of the
form (11). Moreover, if there exists a Hurwitz
stable Metzler matrix A, e R™" such that:

A <A, VkeN. (15)
Then the stability radius (14) satisfies the
following inequality:

<r, (A,D,&)<min{r, (A, .D,.E,)}, (16)
max ' keN
i,jeN

EA; D||

N
[EAD
is the stability radius of the positive subsystems (2).

where, for each ke N, r. (A, D, E,)=

Proof. To prove the upper bound, assume
to the contrary that

. (A,D,E)> rpw r.(A..D,.E,).

It follows that there exists k, € N such that
e (AD,E)>r, (Ako ,Dko ,Eko).
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By definition (5) of structured stability
radius, we can choose a positive perturbation
A=A, such that r, (A,D,€)>I A lI>r(A, D, E,)
then the subsystem §<(t) =A, X(),t=0 is not
exponentially stable. This implies, however,
that the perturbed switched linear system (11)
is not exponentially stable under the switching
signal  o(t)=k,, t>0 contradicting the
definition of stability radius (14).

To prove the lower bound, based on the
article by Le et al. (2020), Theorem 3.1, we
also have the results in which |A|, is replaced
by [A]. .. The theorem is proved.

Remark 3.1. In case the two dimensions
A, =(a)) eR*? k=1,2 are Metzler Hurvitz
stable  matrices and D, =(d;) e R,
E, =(ei‘J?) eR%* are given matrices defining
the structure of positive perturbations. We
measure the size of the positive structured
perturbations A= (A, A,) e RY % xR %,

Ay = (55) e R %; k,i, j=1,2 identified by

IAlg=l A+ A, 1. (17)

Put r=minll Allgsuch thati A, I1>0, Il A, 120,
(0161105565, + diseirdZie5,) Il Ay Il IHA, Il +
+(a3,01561, —a5,direry) Il A Il +
+(aly05:65 - ayd5,e%,) I Ay Il (a3, - ar,ad;) > 0and
r,=minll Allg such that 1A, 1>0, 1A,1>0,
(0f16f103,65, + d31e5105655) Il A Il 11 A, Il +
+(agyd3,65; —add3,5,) I Ay Il +
+andizel, —ag,diefy) I Ay Il -(afiaz, —aisa5) 2 0.

Then, we obtain the formula of the stable
radius of the system (1) by the following theorem.

Theorem 3.2. Assume that the switched
positive linear system (1) is exponentially
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stable under structured perturbation (12). Then
the stability radius is

e, (A, D, &) =min{r, 1,}. (18)

Proof. Using Theorem 2.3, item (iv), the
perturbed system (11) is not exponentially
stable if and only if

2 2 g2 42
a21 + d2152leZl
2 2 g2 42
a22 + d22522e22

1 1141
all + dllé‘llell
1

1 1 1 SO
ay, +0;,0,,€),

2

alzl + dlzlé‘llelzl
a;, +d;,558,
Equivalently

1 1 5141
aZl + leé‘ZleZl
1

1 1 1 < 0
a22 + d22522e22

or

_(aill + d1115111e111)(3-222 + d22252223222 -
(8, + 1,051, )(3, + 055,83, <O,
(ay; +di151e7)) (g, +d5,00,85,) -
__(a122 + d122§122e122)(a;1 + d;lé‘zlleél) <0

or equivalently,

_ahagz +1105,65,0%, + a5,011€1161 +
+d1ye1105,65,81155, — (alyag; +a1pd5165,551)
—(a5101261,51, + dipe1rd5165181255) <O;
afiaz, +af10,85,55, + apdiefiof +
+df16f1 05,065,575 — (afap; + 8510056(555)

| —(a503165160; + d31€5,05605%15(3) <.

Since D, e R, E, e R¥";A, e R' and
A, k=1,2 are Metzler Hurwitz matrices the
af <0and af >0,vi= j=12.

Then
_a%lagz +a1105,65,55, + a5,d11e11 5 +

1.1 42.2 d <2 1.2 1422 2
+01161105262,0110%p — 12851 — 1051651577 —
2 1.1 d 1.1 42.2d <2 A
—a51012€12017 — Ui2€1,0d51€5107,05; <0;
2.1 201 o .1 42,2 <2
81185, + 81102,€5,07, + az,0116110y7 +

221 .1 241 2.1 1 42.2 o2
+01161022€220(10%p — @j2851 — 83101262517 —

2411 o 1.1 42,2 o1 o2
| —@12051€510%1 — d21€31015€{55210(5 < 0.



Dong Thap University Journal of Science, Vol. 10, No. 5, 2021, 15-24

By using matrix norm, we have:

ajja2, +as,diel I Al +al;dZ,e3, Il A, Il -
1,142 .2 1,2 1 42,2

-di1e11d5065 1 A I A, I —ag, 85, —ag,d5e5 | Ay Il -

~aZ,dbel, I Al -ded,d2es T AL 1A, I<O;

aZal, +aidi,ed, I Ayl +a,d2e? Il Ayl -
2,241 A1 1,2 1 42,2
241 41 1.1 42,2

| -abd3ies, Il Ay Il -d3ie5,d5e5 I Ay 111 A, <.

Equivalently

(41,1 42 2 1.1 42,2

(oietydZe3, + dizetydZied: )1 AN A 1 +

2 41l 2411
+(a21d12942 - a22dllell) A I+
1422 1422 1.2 1.2 )\50.
+(alzd21921 - alld22e22) vy ‘(311322 - a12a21) 20,
2,241 1 4l d g2 .2
(dfieidza63, + dhiennddieds )1 AN A I +

241 .1 241 1
+(a12d21621 — alldzzezz) I Al Il +

1422 .142.2 2.1 1.2
+(321d12942 - a22dllell) A, I ‘(311322 - a12a21) 20.

According to the assumption that the switched
positive linear system (1) is exponentially

stable with A, A, eR** being Metzler
Hurwitz stable matrices, then a;, <0, a;, <0,
a; <0,a <0,

2

1 1
ail a‘21

a121 a21
a:l%Z a222 al22 a‘;Z
a; >0,k=12 Vi#j=12and D,D,,E,,E,

are given non-negative definite matrices.
We have

>0, >0,

(dizel;d7.€5 + dii€l,d €5, ) =0,
azzldllzellz - a222dlllelll) >0,

(ailzdzzlezzl - a111d222e222) 20, a1123221 - a111a222 >0,
(dndie, +digidres, ) >0,
(aizzdéleél N aizidézeéz ) >0,

1 42pa2 1 q42a2 1,2 2.1
(a21d12e12 - a22dllell) 20, a,ay —a;ay, >0.

Case 1: Find r,=minll Allg such that
1A 120, 11 A, 1120 and
11422 1.1 .42.2
(di161102265, + di€12051€51) M A I IHA, 1T +
2 1.1 .2 .41.1
+(ag10i2612 —agdiser) Il A Il +
1422 1422 1.2 1.2
+(agpd3165 —a1105,€5,) I A, Il (8,89, —a3,85;) > 0. It
is divided into two claims:
1.1 42,2 1.1 42,2
dy1€61102,€%, +d1oe,d5185; =0
1,142 .2 1.1 42.2
or di;€11d5,6% +dizepdse5 #0
s A 1122 11422
Claim 1: di,e,d5.e5 +d€13d5,€ =0,
we get
(agldilzeb - a%zdllleh) I Aq I+
1 42 .2 142 .2 1.2 1.2
+(a12021€51 —a3105262,) I A II -(ag185, —a3,857) > 0.
Because (a;diyei, —a,diser;) OF
(al,d5e5, —ai,d2,e5,) are not simultaneously
Zero.
2 1.1 2 1.1
- If a3,di561, —aj,di€1; =0 then

1.2 1.2
8118y —@ppay

151 2.2 1.42.2°
3705161 — 810,65
1 42 .2 1 42 .2

1.2 1.2
31187 — o8y

I’l = .
2 1.1 2 1.1
a5101,615 — az,dii€ny

2411 2 1.1
- If 51012615 —asdi1€y; # 0 and

a,d3,e2 —aj,d5e5, =0 then

1.2 1.2 1.2 1.2
= min { 8189 — 8y 818 — 8358y }
1422 1.22'21.1 211/
appdyiey —ayyd%8% 8y 016, —agdiey;
Claim 2: d,el,dZe5, +dieldZ,e2, 20, we get
2 41 1 2 41 1
asdizeir —aydiser
T 12 2 1 1 42.2
di1611d52€5; + di€1,d51€5;
1422 1422
31,0565 —a3;d5,6%, T E
1.1 42 .2 1.1 2.2
di161105,€6%, +di,€1,d518%;
1.2 1.2
81187 — 8108, >0
1.1 42 .2 1.1 42,2 —
1161102262, + di2€1205185;

AL I A, I+ Al +

21
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Using Lemma 2.2, we have r, =min{x+ y}
such that 2xy +ax+By—y>0,x>0, y>0,

where x=ll A ll; y =l A, I;
2 1.1 2 1.1
ay101,81p —a%018; |,
1.1 2.2 1.1 .22 =
di2€12057€5, + 03261205185,
142.2 1422
051651 — 31105765,
1.1 2.2 1.1 42,2
d12€12052€5, + 01261205165,
1.2 1.2
Y _ 81189 — &8
1.1 2.2 1.1 2.2
2 dppeipdaen, +dpendyes;
Case 2: Find r, =min |l Allg such that
I A I1>0,11 A, 120 and
(dhie5105e> + dfiefidzoes, )1 Ag 0 A Il +

+(aby03163, — afidbyep, ) I AL I+

e
2
s
2

>0.

1 42,2 1 42,2 2.1 1,2
+(a21d12e12 - a22dllell) Al ‘(3115122 - a12a21) 0.
It is divided into two parts.

f o qeqll 2.2 2201 1
211 2.1 1
(a12d21e21 - alldzzezz) A I+
1422 1 42,2 2.1 1.2
+(321d12912 - aZZdllell) A, I ‘(311322 - a12a21) 0.
2411 2.1 1 1022 14202
Because aj,d2:€5; —a1302,€3; OF adizef; —apdiief;
are not simultaneously zero.
- If af,dzie5, —afid3,e5, =0 then

2.1 1.2
8118y —appay

r2 = .
1 42 2 1 42.2
a1d12€(y — az,di1ef;
- 1422 1422 _

2.1 1.2
81183 —@pay

I’2 = .
2 1 1 2 41 1
17021621 — a102,€5,

2 1 .1 2 41 1
= If a12d21621 —alldzzezz #*= O and
ald5165; —ai1d%,e5, # 0 then
2.1 1.2 2.1 1.2
r, = min { a118p2 — &8 a118p2 — &8y }
1422 122' 211 211 [
101261, —agdi1ely apd516%1 —a1105,€%,

Claim 2: dj e def, +dfiefid,e5, =0, We get

241 .1 2.1 .1
aipd21651 — {102,653,

AL I Ag I+ — A+

1 2.2 4221 1
d31€51017€15 + di1e;,d5,€%

22

a%1d1226122 - a%zdlzlelzl
d%le%1d1226122 + dlzlelzld%Ze%Z
_ alzla%Z - a%Zagl
d%le%1d1226122 + dlzlelzld%ZE%Z o
Using Lemma 2.2, we have r, =min{x+ y}
that 2xy+ax+pBy—-y=0,x>0, y=>0,

where, x=ll A ll; y=ll A, lI;

P

such

2 1.1 241 .1
a1,021651 — a41d5,65,

2 >0;
2 d%leéldfzefz + dlzlelzldézeéz ,
B __ aydbel —agdhel 0
2 d%le%1d1226122 + d1219121d%26%2 o
4 a12151%2 - a%zagl

= >0
2 d%leéldlzzeé + dlzlelzld%ZE%Z
Combining the above two cases, we come
toaformula r, (A,D,€)=min{r, r,}.
Example 3.1. Consider the switched
positive linear system (1) with N={1, 2},
subjected to affine perturbations of the form
(11), where

-2.02 101 011 1.21

A =| 113 -1.03 0.12| D,=|0.13]|,
001 012 -21 0.02
E,=(0.01 103 1.01);
-1.04 113 002 1.32
A,=| 001 -201 101 |,D,=|1.21|,
101 012 -2.05 0.01

E,=(102 105 0.03).

It is easy to verify that the Metzler matrices
A, k=1, 2are Hurwitz stable and

-1.04 113 0.11
A,=| 1.13 -1.03 1.01
1.01 012 -2.05

From Theorem 3.1, we obtain
0.1788 < e, (A,D,&)<0.2350.

Example 3.2. Consider the switched
positive linear system (1) with N={1, 2},
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subjected to affine perturbations of the form
(11), where

A_—o.s 0 D_o.z £-(01 02)
102 -03) % lo3)+ VOl

A_—o.1 0.2 D_o.z £, - (03 0.)
2l 0 -04) % |o01) 2 V7 T

Since a >0,Vi= j=1,2;k=12 and
A4(A)=-03, 4(A)=-05
A(A,)=-0.1 1, (A,)=-04.

The switched positive linear system (1) is
exponentially stable, because

a, a5 :‘—0.5 0 0250
al, a%| | 0 04

i A, =‘_0'1 ‘=0.04>o.
a2, al,| 102 -04

We have.

Case 1: di,ef,d3,e5; +diei1d5,e3, =0,
a5,dizel, —a%diier, =0.08#0, aj,d%e3) —agyd5,es, =0
and aj,a%, —ai,as; =0.2 then
3 02
b a3,0iyef, —a%dizer; 008

1.2 1.2
d118y —appady 25

Case 2: d%le%1d1226122 + d1219121d%26%2 =0,
afzd%19%1 - afﬂ%z‘%z =0, a%1d1229122 - a%zdlzleﬁ =0.018+0
and aZa}, —aj,a3; =0.03 then
=517 21120.03

ad71671 —afdye;, 0.018
Using Theorem 3.2, we obtain
e (A, D, &) =min{r, r,} =1.6667.

2.1 1.2
8187 — 81081 —1.6667

4. Conclusion

In this paper, based on conditions of
exponential stability of the switched positive
linear system and the concept of a stability
radius related to the structured affine of a
matrix of the subsystem, we propose a new
approach to studying the robustness of a linear
system. In the case of a two-dimensional
switched system with two switching signals,

we obtained a formula of the stability radius by
estimating the positive real stability radius.
Some examples are provided for illustrating
the result. Our future work is on the formulas
of stability radius for multi-dimensional
switched positive linear systems with multiple
switching signals.
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