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Abstract 

In this study, the stability constants (log11) of twenty-eight new complexes between several ion 

metals and thiosemicarbazone ligands were predicted on the basis of the quantitative structure property 

relationship (QSPR) modeling. The stability constants were calculated from the results of the QSPR 

models. The QSPR models were built by using the multivariate least regression (QSPRMLR) and artificial 

neural network (QSPRANN). The molecular descriptors, physicochemical and quantum descriptors of 

complexes were generated from molecular geometric structure and semi-empirical quantum calculation 

PM7 and PM7/sparkle. The best linear model QSPRMLR involves five descriptors, namely Total energy, 

xch6, xp10, SdsN, and Maxneg. The quality of the QSPRMLR model was validated by the statistical 

values that were R
2

train = 0.860, Q
2

LOO = 0.799, SE = 1.242, Fstat = 54.14 and PRESS = 97.46. The 

neural network model QSPRANN with architecture I(5)-HL(9)-O(1) was presented with the statistical 

values: R
2

train = 0.8322, Q
2

CV = 0.9935 and Q
2

test = 0.9105. Also, the QSPR models were evaluated 

externally and achieved good performance results with those from the experimental literature. In 

addition, the results from the QSPR models could be used to predict the stability constants of other new 

metal-thiosemicarbazones. 

Keywords: Artificial neural network, multivariate least regression, QSPR, stability constants log11, 

thiosemicarbazone. 

 

 

 

 

 

  

 DOI: https://doi.org/10.52714/dthu.10.5.2021.893 

Cite: Nguyen, M. Q., Tran, N. M. A., Pham, V. T., Bui, T. P. T., & Nguyen, T. D. (2021). Calculation of stability 

constants of new metal-thiosemicarbazone complexes based on the QSPR modeling using MLR and ANN methods. 

Dong Thap University Journal of Science, 10(5), 31-45. https://doi.org/10.52714/dthu.10.5.2021.893. 

https://doi.org/10.52714/dthu.10.5.2021.893
https://doi.org/10.52714/dthu.10.5.2021.893


Natural Sciences issue 

 

32 

                                                 

                                                       

                                    

 guyễn  inh  uang
1*
,  rần  guyễn  inh Ân

1
,  hạm  ăn  ất

2
,  

 ùi  hị  hương  húy
3
 và Nguyễn  hành Được

4 

1
Khoa Công nghệ Hóa học, Trường Đại học Công nghiệp Thành phố Hồ Chí Minh, Việt Nam 

2
Viện Phát triển và Công nghệ ứng dụng, Trường Đại học Hoa Sen, Việt Nam 

3
Khoa Khoa học Cơ bản, Trường Đại học Văn Lang, Việt Nam 

4
Khoa Dược, Trường Đại học Quốc tế Hồng Bàng, Việt Nam 

*
Tác giả liên hệ: Nguyễn Minh Quang, Email: nguyenminhquang@iuh.edu.vn 

 ịch sử bài báo 

Ngày nhận: 21/01/2021; Ngày nhận chỉnh sửa: 23/02/2021; Ngày duyệt đăng: 22/04/2021 

  m t t 

Trong nghiên cứu này, h ng số   n  logβ11) của 28 phức chất mới giữa một số ion kim loại và phối 

tử thiosemicar a one được d  đoán d a trên mô h nh hóa mối quan hệ đ nh lượng giữa tính chất-cấu 

tr c  QSPR)  H ng số   n được tính toán t  kết quả các mô h nh QSPR  Các mô h nh QSPR được   y 

d ng   ng cách sử dụng phương pháp hồi quy đa  iến  QSPRMLR) và mạng th n kinh nh n tạo 

(QSPRANN)  Các mô tả ph n tử, hóa l  và lượng tử của các phức chất được tính toán t  cấu tr c h nh 

học ph n tử và phương pháp lượng tử  án th c nghiệm PM7 và PM7/sparkle  Mô h nh tuyến tính tốt 

nhất QSPRMLR  ao gồm năm mô tả: Total energy,  ch6,  p10, SdsN và Ma neg  Chất lượng của mô h nh 

QSPRMLR được đánh giá qua các giá tr  thống kê như R
2

train = 0,860, Q
2

LOO = 0,799, SE = 1,242, Fstat   

54,14 và PRESS   97,46  Mô h nh mạng th n kinh QSPRANN với kiến trúc I(5)-HL 9)-O 1) được t m 

thấy với các giá tr  thống kê: R
2

train = 0,8322, Q
2
CV = 0,9935 và Q

2
test   0,9105  Ngoài ra, các mô h nh 

QSPR này đ  được đánh giá ngoại và cho kết quả tốt so với các giá tr  th c nghiệm  Hơn nữa, kết quả 

t  các mô h nh QSPR có thể được sử dụng để d  đoán h ng số   n của các phức chất giữa ion kim loại 

và thiosemicar a one mới khác  

 ừ kh a: Mạng th n kinh nh n tạo, hồi quy đa  iến, QSPR, h ng số   n log11, thiosemicarbazone. 
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1. Introduction 

The diverse structure and easy 

complexation with many metal ions of 

thiosemicarbazone derivatives led to its wide 

applications in many fields (Casas et al., 2000). 

In the field of chemistry, thiosemicarbazones 

are used as analytical reagents (Reddy et al., 

2011), they are also used as a catalyst in 

chemical reactions (Eg˘lencea et al., 2018). 

Besides, they also have application in biology 

(Nagajothi et al., 2013), environment 

(Pyrzynska, 2007) and medicine (Ezhilarasi, 

2012). This is the reason why 

thiosemicarbazone derivatives and their 

complexes are popularly studied in practice. 

Recently, the stability constant of the 

complexes regarding thiosemicarbazone 

ligands has been explored for related 

applications like analytical chemistry with the 

UV/VIS spectrophotometric method or drug 

design via good pharmaceutical activity 

(Nagajothi et al., 2013; Ezhilarasi, 2012).  

On the flip side with continuous efforts of 

scientists, new mathematical methods have 

been discovered and the powerful development 

of computer science has led to the emergence 

of many chemometric tools applied widely in 

computational chemistry (Yee & Wei, 2012). 

Therefore, we combined mathematical 

methods, chemistry and software in order to 

find an exact direction in theoretical research 

for a new substance group. This method was 

called the modeling of the quantitative 

structure property relationships (QSPR) 

applied on the complexes of 

thiosemicarbazone and metal ions in the work 

(Yee & Wei, 2012).  

In this work, we approached the QSPR 

modeling methods for the construction QSPR 

models with the logarithm of stability 

constants (logβ11) of the complexes (M:L) 

between thiosemicarbazone ligands with 

several metal ions (M = Cu
2+

, Zn
2+

, Fe
2+

, Fe
3+

, 

Cd
2+

, Ag
+
, Mo

6+
, Mn

2+
, La

3+
, Pr

3+
, Nd

3+
) in 

aqueous solution. The logβ11 values were 

selected from an experimental published 

database. The 2D and 3D-descriptors of metal-

complexes are taken from the results of 

calculation on the structure optimization of 

complexes by means of semi-empirical 

quantum mechanics (Kunal et al., 2015) and 

QSARIS package (QSARIS 1.1, 2001). The 

two kinds of QSPR models were constructed 

by using multiple linear regressions 

(QSPRMLR) and the artificial neural network 

(QSPRANN). These QSPR models were 

evaluated fully by combining cross and 

external validation procedures. Besides, a new 

series of thiosemicarbazone ligands and 

complexes were designed and predicted the 

stability constant by the outcome of the 

developed QSPR models. 

2. The QSPR modeling method 

Obviously, the quantitative structure and 

property relationship (QSPR) method is known 

as in the silico method used widely in many 

fields for predicting properties of chemical 

compounds based on the relationships between 

the structural characteristics and the properties 

(Yee & Wei, 2012). Also, the QSPR is known 

to derive from a quantitative structure and 

activity relationship (QSAR), in which the 

properties of the model are replaced by 

activity, first introduced by Crum Brown and 

Fraser (Kunal et al., 2015) in 1868. 

In the 1940s, the appearance of chemical 

graph theory and the publications of Wiener 

and Platt’s research helped the development of 

QSPR modeling (Kunal et al., 2015). 

According to the statistics up to 2016, the 

number of published works related to QSPR 

models was about 11,000 projects (Kunal et 

al., 2015). Nowadays, the QSPR method is 

widely used and deemed as an effective 

method for finding new compounds. 

The QSAR/QSPR model should meet the 

requirements of the OECD principles (OECD, 

2007) as follows: 

 A determined response; 

 A clearly algorithm; 

 A detailed applicability domain; 
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 Statistical response; 

 Explaining the mechanism, if possible. 

The development of QSPR model consists 

of the following main steps (Kunal et al., 2015): 

 Data mining; 

 Structural compounds design and 

optimization; 

 Calculating the molecular descriptors; 

Standardized data sets; 

 Building models; 

 Testing and evaluation model; 

 Application of the models. 

The basic equation of the QSPR method 

can be expressed mathematically as follows 

(Kunal et al., 2015): 

      .Response property f descriptors   (1) 

There are two popular approaches to 

establish QSPR models, that is linear 

regression (MLR, PLS, PCR) and machine 

learning method (SVR, ANN) (Kunal et al., 

2015). In this work, we use two approaches to 

build the QSPR models of MLR and ANN. 

3. Data and Computational methods 

For a QSPR model, the standardized steps 

that must be carried out (Kunal et al., 2015), 

which are clearly indicated in the following 

subsections. 

3.1. Stability constant of complex and 

structure selection 

This study selects the ML complex that 

formed between a metal ion (M) and a 

thiosemicarbazone ligand (L). The structure of 

the selected complexes is shown in Fig. 1. 

a)                                    b)           b)      

 

 

 

 

 

Figure 1. Structure of the thiosemicarbazone 

ligand (a) and the metal-thiosemicarbazone 

complex (b) 

Therefore, the formation of the complex is 

the general equilibrium reaction (Harvey, 2000) 

p M + q L   ⇌   MpLq. (2) 

In which, in one step with p = 1 and q = 1, 

the stability constant (β11) is calculated on the 

concentrations of the reagents and complexes 

at the equilibrium time. It is given by 

11

[ML]
.

[M][L]
   (3) 

3.2. Data selection 

The data mining is the first step in the 

QSPR modeling research. Firstly, a great 

amount of related data was mined from 

prestigious data source, then two methods such 

as AHC and k-means are used to divide it into 

several data sets (Kunal et al., 2015). In this 

study, a data set comprising the 50 values 

logβ11 of complexes between metal ions and 

the ligand thiosemicarbazone was used to build 

QSPR modeling on Table 1. 

3.3. Descriptors calculation 

Molecular descriptors are understood as the 

variables in the equations of the QSPR models. 

They can be specified as basic numerical 

characteristics related chemical structures. So, the 

metal-thiosemicarbazone complexes were drawn 

molecular structure with Avogadro 1.2.0 (Jekyll 

& Minimal, 2017) and optimized by using the 

semi-empirical quantum method with new 

version PM7 and PM7/sparkle on the 

MoPac2016 system (Stewart, 2002). The variable 

descriptors in the data set were determined by 

means of the QSARIS package (QSARIS 1.1, 

2001; Pham, 2009). The quantum descriptors 

were collected fully from the results of quantum 

mechanics (Kunal et al., 2015). 

3.4. The QSPR models development 

The two modeling methods were used to 

develop the QSPR regression models in this 

study, namely the multivariate linear 

regression (MLR) and artificial neural network 

(ANN). The QSPRANN models are established 

on the basis of the initial variable form the 

result of the QSPRMLR model. 
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Table 1. The 50 stability constants of complexes (n) in experimental dataset  

with minimal (logβ11,min) and maximal (logβ11,max) values 

No 
Thiosemicarbazone ligand Metal 

ions 

Number of 

complexes, n 
logβ11,min logβ11,max Ref. 

R1 R2 R3 R4 

1 H H H - C6H4OH Cu
2+

 12 4.750 5,280 
Biswas et al., 

2014 

2 H H H -C13H16NO3 Cu
2+

 1 17.540 17.540 
Milunovic et al., 

2012 

3 H H H -C13H16NO3 Zn
2+

 1 12.400 12.400 
Milunovic et al., 

2012 

4 H H H -C13H16NO3 Fe
2+

 1 12.240 12.240 
Milunovic et al., 

2012 

5 H H H -CH=CHC6H5 Cd
2+

 1 5.544 5.544 
Krishna &d 

Devi, 2015 

6 H H H -CH=CHC6H5 Mo
6+

 1 6.5514 6.5514 
Krishna & 

Mohan, 2013 

7 -CH3 -CH3 -C5H4N -C5H4N Cu
2+

 1 7.080 7.080 Gaál et al., 2014 

8 -CH3 -CH3 -C5H4N -C5H4N Fe
3+

 1 7.060 7.060 Gaál et al., 2014 

9 H H H -C14H12N Cd
2+

 1 5.860 5.860 
Koduru & Lee, 

2014 

10 H -C2H5 H -C9H5NOH Cu
2+

 1 14.670 14.670 
Rogolino et al., 

2017 

11 H -C6H5 H -C9H5NOH Zn
2+

 1 7.300 7.300 
Rogolino et al., 

2017 

12 H H H -C5H3NCH3 Ag
+
 1 14.500 14.500 

Jiménez et al., 

1980 

13 H H H -C6H3(OH)OCH3 Cd
2+

 4 6.790 7.340 
Garg & Jain, 

1989 

14 H H H -C6H3(OH)OCH3 Zn
2+

 4 7.110 7.470 

Garg, B. S., and 

Jain, V. K., 

1989 

15 H H -CH3 -C6H4OH Mn
2+

 3 4.320 5.000 Garg et al., 1990 

16 H H -C6H5 -C(C6H5)=N-OH Cu
2+

 1 5.7482 5.7482 
Reddy & 

Prasad, 2004 

17 H H H -C6H4NH2 Cu
2+

 2 11.570 11.610 
Sawhney & 

Chandel, 1983 

18 H H H -C6H4NO2 La
3+

 2 9.450 10.840 
Sawhney & 

Chandel 1984 

19 H H H -C6H4NO2 Pr
3+

 2 10.420 11.040 
Sawhney & 

Chandel, 1984 

20 H H H -C6H4NO2 Nd
3+

 2 8.410 9.090 
Sawhney & 

Chandel,1984 

21 H H H -C6H4NO2 Cd
2+

 2 10.630 10.950 
Sawhney & Sati, 

1983 
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No 
Thiosemicarbazone ligand Metal 

ions 

Number of 

complexes, n 
logβ11,min logβ11,max Ref. 

R1 R2 R3 R4 

22 H H H -C6H4NO2 Al
3+

 2 10.980 11.240 
Sawhney & Sati, 

1983 

23 H H -C6H4OH -C6H4OH Fe
3+

 1 5.496 5.496 
Toribio et al., 

1980 

24 H H -CH3 - C5H4N Cu
2+

 1 5.491 5.491 
Admasu et al., 

2016 

25 H H -CH3 - C5H4N Cu
2+

 1 5.924 5.924 
Admasu et al., 

2016 

 

3.4.1. MLR method 

In QSPR modeling methods, the values 

logβ11 are considered as the target values and 

in this case, they are dependent variables (Y) 

while the independent variables are 

quantitative variables as structural descriptors 

(X). If they are well correlated, the model is 

represented by a multivariate linear regression 

(MLR) model according to the following 

equation: (Kunal et al., 2015; XLSTAT, 2016) 

0

1

, 


 
k

j j

j

Y X          (4) 

where β0, is the intercept of the model, βj 

is the regression coefficients and k is number 

of explanatory variables in the equation. 

3.4.2. Artificial neural network 

In its nature, the artificial neural network 

(ANN) is a non-linear regression method that 

exerts to facsimile the operation of human 

neural networks. Nowadays, ANN is used 

widely in many fields such as mathematics, 

electronic research, medicine, chemistry and 

several other practical applications (Gasteiger 

& Zupan, 1993); particularly, it is applied 

successfully in the field of drug design and 

searching for new chemical compounds. 

Generally, an ANN model includes an 

input layer, one or more hidden layer, and an 

output layer. Neurons in each of the layers are 

called nodes interconnecting with one another 

and receiving linked weights. The typical ANN 

architecture used in many studies is multi-layer 

perceptron (MLP) for the formation of models 

(Gasteiger & Zupan, 1993). 

In this study, the MLP-ANN type is used 

with an error back-propagation algorithm (Vogl 

et al., 1988). The architecture consists of three 

layers I(k)-HL(m)-O(n). The input layer (k) put 

out from the variables of the MLR model. A 

quantitative output layer (n) is the stability 

constant logβ11 and the number of hidden 

neurons (m) is determined by neurons on the 

input and output layer. So, there are two steps to 

find out the best ANN architecture for 

QSPRANN model. In the first step, the m values 

of hidden neurons are surveyed by using Neural 

Designer tools (Artelnics, 2020), then we use 

data sets to build and externally validate the 

QSPRANN model from the results of surveyed 

models. These calculations of the second step 

are run on the Matlab system (Matlab 2016a 

9.0.0.341360, 2016) with Neural Network tool 

(nntool) toolbox. 

In addition, to investigate the m values of 

hidden neurons, the training of ANN models 

uses two basic transfer functions in the neural 

network that are the hyperbolic sigmoid 

tangent and log-sigmoid transfer function. 

These transfer functions are represented 

mathematically as follows (Vogl et al., 1988) 

 
1

2

2
tan ( ) .

1




 

 n

a sig n

e
       (5) 

1
log ( ) .

1 
 

 n
a sig n

e
              (6) 
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3.5. Model validation  

The validation of the models is an 

important period in QSPR research. Normally, 

the models were validated internally and 

externally by two different data sets. Because 

the models were constructed based on statistics 

methods, they were checked by using the 

values R
2

train for internal set, Q
2

LOO or Q
2

EV for 

external-validation set (Kunal, 2015; Steppan 

et al., 1998). These were calibrated by the 

same formula 

2

2 1

2

1

ˆ( )

1 ,

( )







 







n

i i

i

n

i

i

Y Y

R

Y Y

                (7) 

where Yi, Ŷi, and Ȳ are the observed, calculated 

and average value, respectively. 

In addition, the R²adj is an adjustment to 

R², which takes into account the number of 

variables used in the model R²adj is defined by 

(Steppan et al., 1998) 

 2 2 21
1 .

1


  


adj

k
R R R

N
             (8) 

The standard errors (SE) is the square root 

of the mean squared error (MSE) and it is 

defined by (Steppan et al., 1998) 

2

i i

1

ˆ(Y Y )

,
1






 


N

iSE
N k

              (9) 

where N and k are the number of variables 

training set and the models, respectively. 

The building of ANN model is trained 

until the mean square error (MSEANN) is 

minimized followed by a discrepancy of the 

output and real values (Matlab 2016a 

9.0.0.341360, 2016). MSEANN is the average 

squared error between the networks 

outputs (o) and the target outputs (t). It is 

described as follows (Gasteiger & Zupan, 

1993; Rojas, 1996). 

 
2

ANN

1

1
. 

n

i iMSE t o
n

          (10) 

This work uses the average absolute 

values of the relative errors MARE (%), where 

ARE (%) is the absolute value of the relative 

errors to compare the quality of the models. 

These are represented as follows (Pham, 2009). 

    1

,%

,% ,


n

i

i

ARE

MARE
n

     (11) 

     
11,exp 11,cal

11,exp

log log
,% 100,

log

 




ARE   (12) 

where n is the number of test substances; β11,exp 

and β11,cal are the experimental and calculated 

stability constants, respectively 

To evaluate the variable contributions in 

the models, we used a quantity which is the 

average contribution percentage, MPxk,i. It is 

determined according to formula (13) (Pham, 

2009) 

, ,

,

1
, ,

100. .1
,% ,

.

 


N
k i m i

k i k
m

k j m j

j

b x
MPx

N
b x

         (13) 

where N is number of observations; m is 

number of substances used to calculate Pxk,i 

value; bk,i are the parameters of the model. 

4. Results and discussion 

4.1. QSPRMLR modeling 

The multiple linear regression analysis 

was accomplished by stepwise regression 

technique on the Regress system (Steppan et 

al., 1998) and MS-EXCEL (Billo, 2007). The 

cross validation for QSPR models was carried 

out by the leave-one-out process (LOO) using 

the statistic Q
2

LOO (Kunal et al., 2015; Steppan 

et al., 1998). 

The data set for the building of QSPRMLR 

including the 50 stability constants values of 

complexes are divided into the training set and 

the test set. The criteria of statistical values 

such as R
2

train, R
2
adj, Q

2
LOO and Fstat (Fischer’s 

value) are used to evaluate the quality of 

models (Kunal et al., 2015). The QSPRMLR 

models and the statistical values are shown in 

Table 2.  
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Table 2. The results of QSPRMLR models (k of 1 to 5) and statistical values 

k Variables SE R²train R²adj Q²LOO Fstat PRESS 

1 x1 2.941 0.144 0.126 0.029 8.085 470.89 

2 x1/x2 1.723 0.712 0.700 0.649 58.23 170.12 

3 x1/x2/x3 1.533 0.777 0.763 0.692 53.50 149.33 

4 x1/x2/x3/x4 1.366 0.827 0.811 0.768 53.70 112.72 

5 x1/x2/x3/x4/x5 1.242 0.860 0.844 0.799 54.14 97.46 

Notation of molecular descriptors  

Total energy x1  SdsN x4  

xch6 x2  Maxneg x5  

xp10 x3     

The choice of the variables for the best 

QSPR model is based on the results of Table 2. 

The variables are selected on basis of the 

changing the R
2

train, Q
2

LOO and Fstat values and 

k variables for meeting statistical requirements. 

The results showed that when k values 

increased to 5, the QSPR model recieved the 

best statistical values, so it leads to the 

selection of the model with the k of 5 for the 

tendency of variation. Specifically, the 

variables from x1 to x5 were closely monitored 

on the basis of the p-value (< 0.05) and t-

student characterized the variables (Kunal et 

al., 2015; Steppan et al., 1998). The best linear 

QSPRMLR models were selected with the 

statistical values follows: 

logβ11 = -2.896 - 0.00231· x1 -95.81 · x2 + 

3.810 · x3 + 1.558 · x4 - 20.76 · x5           (14) 

n = 50; R
2

train = 0.827; Q
2
LOO = 0.769;  

SE = 1.242. 
As a consequence, the data used to 

develop the MLR is completely consistent and 

has a good predictability. The predictive ability 

of the QSPRMLR model is very suitable for 

complex groups. Therefore, this model can be 

used to predict new complexes of the same 

type group based on the AD and Outliers 

estimates (XLSTAT, 2016). 

a) 

 

 

 

 

 

 

 

 

b)  

 

 

 

 

 

 

 

Figure 2. a) Change tendency line of values 

SE, R
2

train and Q
2

LOO according to k variables;   

b) Correlation of experimental vs. predicted 

values logβ11 of the training compounds using 

the QSPRMLR model (with k = 5) 
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Table 3. Statistical values and variables, and MPxk,i and GMPxi contribution 

in models QSPRMLR with k of 3 to 5 

Statistical 

values and 

variables 

QSPRMLR MPxk,i, % 
GMPxi, 

% k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 

R
2

train 0.777 0.827 0.860 – – – – 

R
2

adj 0.763 0.811 0.844 – – – – 

Q
2
LOO 0.692 0.768 0.799 – – – – 

SE 1.533 1.366 1.242 – – – – 

constant -6.375 3.569 -2.896 – – – – 

x1 -0.00331 -0.00269 -0.00231 47.1322 28.9843 19.4208 31.8458 

x2 -77.41 -92.54 -95.81 46.2050 41.6942 33.8984 40.5992 

x3 2.563 3.074 3.810 6.6628 6.1032 6.0056 6.2572 

x4 – 1.391 1.558 – 23.2184 20.3011 14.5065 

x5 – – -20.76 – – 20.3740 6.7913 

 

The study used three vicinity models to 

find out the effect of descriptors in the model 

according to the GMPxi values (GMPxi is the 

average value of MPxk,i). The results in Table 3 

showed that the contribution of the variables in 

the order of xch6 (x2) > Total energy (x1) > 

SdsN (x3) corresponds to the values of 

40.5992, 31.8458 and 14.5065. The xch6 

parameter namely Chi chain 6 is the simple 6
th

-

order chain chi index which appreciates the 

important role of six cycle (QSARIS 1.1, 

2001). The total energy is the quantum 

parameter which is the sum of kinetic and 

potential energies of the formed complexes 

while SdsN parameter is the sum of all (= N –) 

E-State values in a molecule (QSARIS 1.1, 

2001). The values indicate the role of nitrogen 

bonds type in the complexes. The two 

remaining parameters (xp10 and Magnex) do 

not significantly affect the model. The 

important parameters will be selected to design 

new complexes and predict the stability 

constant of these complexes. 

 

 

4.2. QSPRANN modeling 

The ANN model is built on the same 

data set and the resulting variables of the 

MLR model. So, the model is developed 

upon 5 variables of QSPRMLR model and the 

architecture of the neural network consist of 

three layers I(5)-HL(m)-O(1). The input 

layer I(3) holds 5 neurons of Total energy, 

xch6, xp10, SdsN and Maxneg, while the 

output layer O(1) contains 1 neuron of the 

logβ11 values. The number of hidden layer 

(m) will be scanned to search for several 

good models with the training data set by 

using Design Neural tools (Artelnics, 2020). 

The ANN models are trained with 

Levenberg-Marquardt algorithm and back-

propagation error approach (Gasteiger and 

Zupan, 1993; Vogl et al., 1988). The transfer 

functions used in the training process are 

log-sigmoid and hyperbolic tangent function 

(Vogl et al., 1988). The results of the m 

neurons are given in Table 4.  
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 Q
2
 = 0.9404 of QSPR

ANN

 Q
2
 = 0.8893 of QSPR

MLR

2 4 6 8 10 12 14

2

4

6

8

10

12

14

lo
g


1
1
,e

x
p

log
11,pred

Table 4. The scanned QSPRANN models I(5)-HL(m)-O(1)  

with statistical parameters 

No 
QSPRANN 

models 
R

2
train Q

2
test Q

2
CV 

Training 

error 

Test 

Error 

Validation 

Error 

Transfer 

Function 

1 
I(5)-HL(3)-

O(1) 
0.9288 0.9518 0.9876 0.6046 0.2869 1.3679 

hyperbolic 

tangent 

2 
I(5)-HL(5)-

O(1) 
0.9579 0.9536 0.9748 0.3615 0.3210 1.5054 

hyperbolic 

tangent 

3 
I(5)-HL(6)-

O(1) 
0.9276 0.9528 0.9910 0.6470 0.2946 0.8261 log-sigmoid 

4 
I(5)-HL(7)-

O(1) 
0.8614 0.9292 0.9703 1.3253 0.3097 1.2169 

hyperbolic 

tangent 

5 
I(5)-HL(9)-

O(1) 
0.8322 0.9105 0.9935 1.6650 0.3839 1.8190 log-sigmoid 

6 
I(5)-HL(10)-

O(1) 
0.8758 0.9264 0.9935 1.4146 0.3425 0.1477 log-sigmoid 

7 
I(5)-HL(10)-

O(1) 
0.8858 0.9375 0.9933 0.9978 0.3336 0.4616 

hyperbolic 

tangent 

 

Next, we use the external data set to find 

out the best QSPRANN model by external 

validation technique. The obtained results 

show that the QSPRANN model I(5)-HL(9)-

O(1) is shown in bold (Table 5) with the best 

predictability attached to the Q
2

EV value of 

0.9404 as in Fig. 3. As a consequence, the log-

sigmoid transfer function is used for network 

training and the optimized parameters of ANN 

such as the momentum constant of 0.05, the 

learning rate of 0.01, and the convergent goal 

of 10
-7

. 

a) 
 

 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

 

 

 

Figure 3. (a) Architecture of neural 

network I(5)-HL(9)-O(1); (b) The correlation 

between experimental vs. predicted values of 

external data set of QSPR models 

4.3. The external validation of QSPR models 

To create a good model, it is necessary to 

perform external evaluation on a data set 

independent of the training data set. This work 

used the external data with twelve complexes 

from the experimental studies. The validated 

results are described in Table 5. 



                     Dong Thap University Journal of Science, Vol. 10, No. 5, 2021, 31-45 

 

 

41 

Table 5.  he experimental logβ11,exp and external predicted logβ11,cal values  

from the QSPR models 

Thiosemicarbazone ligand Metal 

ions 

logβ11.e

xp 

logβ11.cal 
ref. 

R1 R2 R3 R4 QSPRMLR QSPRANN 

H H H - C6H4OH V
5+

 5.3222 6.6116 5.0338 
Reddy & Reddy, 

1983 

H H H -C9H5NOH Cu
2+

 
14.560

0 
16.3493 13.5943 

Rogolino, et al., 

2017 

H H H -C6H4OH Ag
+
 

15.600

0 
13.0625 12.8733 

Jiménez, et al., 

1980 

H H 
-

CH3 
-CCH3=N-OH Cu

2+
 

19.100

0 
20.3499 17.3796 

Atalay & Ozkan, 

1994 

H H H -C6H3(OH)OCH3 Ni
2+

 8.6500 11.2270 7.6249 
Atalay & Ozkan, 

1994 

H H H -C10H6OH Mn
2+

 4.6600 4.4417 5.3646 
Sahadev et al., 

1992 

H H H -C10H6OH Cd
2+

 5.9300 4.0276 5.2577 
Sahadev et al., 

1992 

H H - -C9H8NO Pb
2+

 7.9920 7.9901 6.6023 
Sarkar & Garg, 

1987 

H H H -C6H4NH2 Co
2+

 
11.950

0 
11.9804 10.4610 

Sawhney & 

Chandel, 1983 

H H H -C6H4NH2 Mn
2+

 
12.140

0 
11.5222 11.0507 

Sawhney & 

Chandel,   1983 

H H H -C6H4NH2 Mn
2+

 9.9900 11.5222 11.0507 
Sawhney & 

Chandel, 1983 

H H H -C6H4NH2 Zn
2+

 
11.320

0 
10.2128 12.1537 

Sawhney & 

Chandel, 1983 

    MARE, % 13.0307 11.1375  

        

As observed by Table 6, the MARE values 

of QSPRMLR and QSPRANN I(5)-HL(9)-O(1) 

models are 13.0307% and 11.1375%, 

respectively. The results pointed out that the 

ANN model has better predictability than the 

MLR model. Furthermore, the predicted 

logβ11,cal values of ANN model are approximate 

to the experimental logβ11,exp values. 

In addition, the results of data analysis 

in Table 5 are indicated Fig. 4b, it can add to 

that point that the predictability of the two 

models is extremely positive (Kunal et al., 

2015). With this, the neural network and 

linear regression models express the 

correlation between the predicted values and 

the experimental values with Q
2

EV values of 

0.8893 and 0.9404, respectively.  

Using the ANOVA method to evaluate the 

difference between the experimental and 

predictive values of the both models; accordingly, 

the differences between the QSPR models are 

negligible (F = 0.1462 < F0.05 = 3.2849).  

4.4. Designing and Prediction of new complexes  

The phenothiazine and carbazole 

derivatives are selected to design new 
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Table 6. Twenty-eight metal-thiosemicarbazone complexes  

with the predicted logβ11,new values from the constructed QSPR models 

R4 site 
Metal 

ions 

logβ11,new 
R4 site  

Metal 

ions 

logβ11,new 

MLR ANN MLR ANN 

 

Cd
2+

 5.6901 6.7180 

 

Cd
2+

 7.6102 6.6247 

Ni
2+

 6.4982 7.0743 Cu
2+

 9.0953 7.2410 

Cu
2+

 7.1884 8.0819 Zn
2+

 7.5959 6.6284 

 

Ag
+ 

11.0823 11.6565 

 

Ag
+
 19.5092 17.0444 

Ni
2+

 7.6813 7.2907 Cu
2+

 11.8261 9.5105 

 

Ag+ 14.5477 17.4063 

 

Cd
2+

 16.9690 17.5344 

Zn
2+

 8.9921 9.2583 Cu
2+

 18.4662 17.5347 

 

Ag
+
 11.4791 8.4823 

 

Ag
+
 11.7851 9.2863 

 

Ag
+
 19.1357 17.5366 

 

Ag
+
 17.7735 17.5328 

 

Ag
+
 15.0392 17.5287 

 

Ag
+
 17.0232 17.5345 

 

Zn
2+

 18.8756 17.4754 

 

Zn
2+

 19.2865 17.4970 

 

 

 

 

 

       

       

       

thiosemicarbazone and the complexes among 

the new ligands with several popular metal ions 

as Cd
2+

, Ni
2+

, Cu
2+

, Ag
+
 and Zn

2+
 regarding the 

five descriptors Total energy, xch6, xp10, SdsN 

and Maxneg of the built models.  

We choose these derivatives because they 

have their wide applications in many fields and 

they have been synthesized in previous 

experimental studies (Al-Busaidi et al., 2019; 

Sudeshna & Parimal, 2010; Huang et al., 2017; 

Krucaite & Grigalevicius, 2019). The new 

thiosemicarbazones are formed by attached 

phenothiazine and carbazole groups at the R4 site 

while the remaining positions as R1, R2 and R3 of 

the thiosemicarbazones are hydrogen atoms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A series of new complexes are carefully 

screened and they are embedded in the spatial 

space data of the training set to test for AD and 

Outlier (XLSTAT, 2016). The results have 28 

complexes that meet the standards of AD and 

they are predicted the stability constant from 

the two built QSPRMLR and QSPRANN models. 

The prediction of new complexes (logβ11,new) is 

given in Table 6. 

Furthermore, the single-factor ANOVA 

method was used to compare the predicted 

logβ11,new values resulting from the QSPRMLR 

and QSPRANN models. It indicated that there is 

no significant difference between the two 

models (F = 0.1930 < F0.05 = 4.0195). 
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5. Conclusion 

In this study, the quantitative structure-

property relationship (QSPR) models based on 

the multivariate linear regression (QSPRMLR) 

and artificial neural network (QSPRANN) have 

been successfully formed by using the dataset 

of structural descriptors and the stability 

constant value of complexes. The complexes 

structures were optimized by new version 

semi-empirical quantum mechanics PM7 and 

PM7/sparkle. The QSPR models were 

validated completely upon statistical values as 

R
2

train, Q
2

LOO, MARE, %, and ANOVA 

methods. The obtained results confirm these 

models as being the new ones for the 

prediction of twenty-eight new designing 

thiosemicarbazone derivatives. Furthermore, 

the results of QSPR models can be useful to 

discover new complexes that can be applied 

further in the essential fields such as analytical 

chemistry, environment monitoring and drug 

designing in pharmacology. 
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