Studying the distribution of L-citrulline in watermelon fruits at different storage conditions

Nha Tran Vi1,2,, Nhut Vinh Nguyen3, Như Quynh Ma3, Thi Trieu Tien Duong3, Kim Trang Nguyen3, Phuong Trang Nguyen 3, Ba Luan Tran3, Quoc Dat Lai2
1 Faculty of Biological, Chemical and Food Technology, Cantho University of Technology, Vietnam
2 Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh City, Vietnam
3 Faculty of Biological, Chemical and Food Technology, Cantho University of Technology, Can Tho province, Vietnam

Main Article Content

Abstract

Watermelons are a natural and rich source of the non-essential amino acid L-citrulline, including the rind and seeds. Therefore, this study carried out three main tasks: i) Evaluate L-citrulline content in different parts of some watermelon types; ii) Monitor the change of L-citrulline in juice from flesh and rind at -20oC, 0oC, and 4oC at the consecutive intervals of 1 day, 3 days, 6 days, 10 days, 15 days and 21 days; iii) Investigate the effect of fresh cut watermelon (skin and flesh) at storage time on the L-citrulline content. UV-vis absorption spectroscopy method was used to determine the L-citrulline content at 490 nm. As a result, the content of L-citrulline in the rind ranged from 0.764 to 1.277 mg/g, which was greater than that of L-citrulline in watermelon flesh (0.580 to 1.103 mg/g), seeds (0.179 to 0.214 mg/g) (dwt) and similar among three types of watermelons. However, L-citrulline in rind juice was more affected by storage temperature and time than L-citrulline in fruit juice at the same freezing temperature. In contrast, the fresh-cut watermelon rind had less L-citrulline content reduction than the fresh-cut watermelon at -20oC for a longer time. These results indicated that watermelon rind, an agricultural waste rich in natural citrulline, should be exploited. Finally, the low temperature below 4oC influenced the L-citrulline content in watermelon, so watermelon juice and fresh-cut watermelon rind will be suitable for long-term freezing.

Article Details

References

Abu-Hiamed, H. (2017). Chemical Composition, Flavonoids and β-sitosterol Contents of Pulp and Rind of Watermelon (Citrullus lanatus) Fruit. Pakistan Journal of Nutrition, 16, 502-507.
Barón, R. D., Valle-Vargas, M. F., Quintero-Gamero, G., Quintanilla-Carvajal, M. X., & Alean, J. (2021). Encapsulation of citrulline extract from watermelon (Citrullus lanatus) by-product using spray drying. Powder Technology, 385, 455-465.
Bekele, Y., & Ramaswamy, H. S. (2013). Study on Extraction and Storage Stability of Watermelon Pulp Powder as Food Ingredient. Ethiopian Journal of Applied Science and Technology, 1, 121-128.
Curis, E., Nicolis, I., Moinard, C., Osowska, S., Zerrouk, N., Bénazeth, S., & Cynober, L. (2005). Almost all about citrulline in mammals. Amino Acids, 29(3), 177-205. http://dx.doi.org/10.1007/s00726-005-0235-4
Davis, A. R., Webber, C. L., Fish, W. W., Wehner, T. C., King, S., & Perkins-Veazie, P. (2011). L-Citrulline Levels in Watermelon Cultigens Tested in Two Environments. HortScience horts, 46(12), 1572-1575.
Dieng, S. I. M., Diallo, A. J., FALL, A. D., Diatta-Badji, K., Diatta, W., Sarr, A., & Bassene, E. (2017). Total polyphenols and flavonoids contents of aqueous extracts of watermelon red flesh and peels (Citrullus lanatus, Thunb). Journal of Pharmacognosy and Phytochemistry, 6(5), 801-803.
Ebadi, M., Mostofi, Y., & Arjmandi, M. (2013). Fresh-cut quality of watermelon during storage at different temperatures. Acta Horticulturae, 1012, 497-502. http://dx.doi.org/10.17660/ActaHortic.2013.1012.65
Fan, J., Park, E., Zhang, L., Edirisinghe, I., Burton-Freeman, B., & Sandhu, A. K. (2021). Correction to Pharmacokinetic Parameters of Watermelon (Rind, Flesh, and Seeds) Bioactive Components in Human Plasma: A Pilot Study to Investigate the Relationship to Endothelial Function. Journal of Agricultural and Food Chemistry, 69(43), 12920-12920. http://dx.doi.org/10.1021/acs.jafc.1c06284
Gu, I., Balogun, O., Brownmiller, C., Kang, H. W., & Lee, S.-O. (2023). Bioavailability of Citrulline in Watermelon Flesh, Rind, and Skin Using a Human Intestinal Epithelial Caco-2 Cell Model. Appl. Sci. 13(8), 4882.
Joshi, V., Joshi, M., Silwal, D., Noonan, K., Rodriguez, S., & Penalosa, A. (2019). Systematized biosynthesis and catabolism regulate citrulline accumulation in watermelon. Phytochemistry, 162, 129-140.
Liu, Y., Hu, X. S., Zhao, X. Y., & Zhang, C. (2013). Inactivation of polyphenol oxidase from watermelon juice by high pressure carbon dioxide treatment. J Food Sci Technol, 50(2), 317-324. http://dx.doi.org/10.1007/s13197-011-0356-6
Mohamad Salin, N. S., Md Saad, W. M., Abdul Razak, H. R., & Salim, F. (2022). Effect of Storage Temperatures on Physico-Chemicals, Phytochemicals and Antioxidant Properties of Watermelon Juice (Citrullus lanatus). Metabolites, 12(1), 75. http://dx.doi.org/10.3390/metabo12010075.
Neglo, D., Tettey, C., Essuman, E., Kortei, N., Boakye, A., Hunkpe, G., Armah, F., Kwashie, P., & Waikhom, S. D. (2021). Comparative antioxidant and antimicrobial activities of the peels, rind, pulp and seeds of watermelon (Citrullus lanatus) fruit. Scientific African, 11, 582. http://dx.doi.org/10.1016/j.sciaf.2020.e00582
Nguyễn, T. B. (2015). Kỹ thuật trồng dưa hấu. Cà Mau: NXB Phương Đông.
Nogales-Delgado, S. (2021). Polyphenoloxidase (PPO): Effect, Current Determination and Inhibition Treatments in Fresh-Cut Produce. 11(17), 7813.
Paris, H. S. (2015). Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Ann Bot, 116(2), 133-148. http://dx.doi.org/10.1093/aob/mcv077
Paris, H. S., Tadmor, Y., & Schaffer, A. A. (2017). Cucurbitaceae Melons, Squash, Cucumber. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.), Encyclopedia of Applied Plant Sciences (Second Edition) (pp. 209-217). Oxford: Academic Press.
Ridwan, R., Abdul Razak, H. R., Adenan, M. I., & Md Saad, W. M. (2018). Development of Isocratic RP-HPLC Method for Separation and Quantification of L-Citrulline and L-Arginine in Watermelons. International Journal of Analytical Chemistry, 2018, 4798530. http://dx.doi.org/10.1155/2018/4798530
Rimando, A. M., & Perkins-Veazie, P. M. (2005). Determination of citrulline in watermelon rind. J. Chromatogr. A, 1078(1-2), 196-200.
Tôn, N. M. N., Lê, V. V. M., & Trần, T. T. (2009). Công nghệ chế biến rau quả. Hồ Chí Minh: NXB Đại học Quốc gia TP.HCM.
Trần, T. T., Nguyễn, V. M., & Huỳnh, N. T. (2014). Các tính chất cơ bản của polyphenol oxydase trích ly từ củ khoai lang trắng (Ipomoea Batatas L.). Tạp chí Đại học Cần Thơ, Số Nông nghiệp 2014 (1), 141-148.
Volino, M., Pinheiro, V., Vieira de Oliveira, G., Conte Junior, C., & Alvares, T. (2021). Storage stability of L-citrulline in cucumber (Cucumis sativus) and watermelon (Citrullus lanatus) juices. Brazilian Journal of Development, 7, 26849-26859.
Wenge, L., Zhao, S., Cheng, Z., Wan, X., Yan, Z., & King, S. R. (2010). Lycopene and citrulline contents in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development. Acta Horticulturae, 871, 543-550.
Yau, E. W., Shamsudin, R., Muda, N., Chin, N., & Osman, H. (2010). Physico-chemical compositions of the red seedless watermelons (Citrullus Lanatus). International Food Research Journal, 17, 327-334.