Effect of limited oxygen gas flux on properties of Al-doped ZnO films

Van Tri Le1, Bao Quan Tran1, Khac Binh Nguyen2, Thi Ngoc Thuy Vo3, Thi Hue Do4, Hai Dang Ngo1, Thi Kim Hang Pham1,
1 Faculty of Applied Sciences, Ho Chi Minh City University of Technology and Education, Ho Chi Minh city, Vietnam
2 VKTECH Research Center, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
3 University of Science, Vietnam National University Ho Chi Minh City, Vietnam
4 TNU - University of Education, Thai Nguyen city, Vietnam

Main Article Content

Abstract

In this study, Al-doped ZnO thin films were sputter deposited on glass substrate as a function of limited oxygen gas inlet. The crystal structure, optical, and electrical properties of the films were characterized using X-ray diffraction, scanning electron microscopy, UV-Vis spectroscopy, and Hall measurement. High crystallinity was found in all AZO samples. Surface morphology presented small grain size of ~ 50 – 100 nm, and thickness of AZO thin films were maintained approximately at 280 nm. Average optical transmittance of AZO films was about 90% in the 450 – 600 nm region, and optical band-gap values varied from 3.327 to 3.380 eV. The electrical resistivity of AZO films decreased with an increasing amount of oxygen flux. These AZO films are quite appropriate for the perspective development of UV photodetectors as a central role absorbing components or n-type semiconducting layers.

Article Details

References

Badgujar, A. C., Yadav, B. S., Jha, G. K., & Dhage, S. R. (2022). Room Temperature Sputtered Aluminum-Doped ZnO Thin Film Transparent Electrode for Application in Solar Cells and for Low-Band-Gap Optoelectronic Devices. ACS Omega, 7(16), 14203–14210. https://doi.org/10.1021/acsomega.2c00830
Bhosle, V., Tiwari, A., & Narayan, J. (2006). Electrical properties of transparent and conducting Ga doped ZnO. Journal of Applied Physics, 100(3). https://doi.org/10.1063/1.2218466
Borysiewicz, M. A. (2019). ZnO as a functional material, a review. Crystals, 9(10). https://doi.org/10.3390/cryst9100505
Bose, S., Arokiyadoss, R., Bhargav, P. B., Ahmad, G., Mandal, S., Barua, A. K., & Mukhopadhyay, S. (2018). Modification of surface morphology of sputtered AZO films with the variation of the oxygen. Materials Science in Semiconductor Processing, 79, 135–143. https://doi.org/10.1016/j.mssp.2018.01.027
Cao, P. J., Han, S., Liu, W. J., Jia, F., Zeng, Y. X., Zhu, D. L., & Lu, Y. M. (2014). Effect of oxygen flowrate on optical and electrical properties in Al doped ZnO thin films. Materials Technology, 29(6), 336–340. https://doi.org/10.1179/1753555714Y.0000000172
Chavan, G. T., Kim, Y., Khokhar, M. Q., Hussain, S. Q., Cho, E. C., Yi, J., Ahmad, Z., Rosaiah, P., & Jeon, C. W. (2023). A Brief Review of Transparent Conducting Oxides (TCO): The Influence of Different Deposition Techniques on the Efficiency of Solar Cells. In Nanomaterials, 13(7). MDPI. https://doi.org/10.3390/nano13071226
Choi, Y. -J., Gong, S. C., Park, C. -S., Lee, H. -S., Jang, J. G., Chang, H. J., Yeom, G. Y., & Park, H.-H. (2013). Improved performance of organic light-emitting diodes fabricated on Al-doped ZnO anodes incorporating a homogeneous Al-doped ZnO buffer layer grown by atomic layer deposition. ACS Applied Materials & Interfaces, 5(9), 3650–3655. https://doi.org/10.1021/am400140c
Fang, G., Li, D., & Yao, B. -L. (2002). Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering. Vacuum, 68(4), 363–372. https://doi.org/10.1016/S0042-207X(02)00544-4
Fragala, M. E., Malandrino, G., Giangregorio, M. M., Losurdo, M., Bruno, G., Lettieri, S., Amato, L. S., & Maddalena, P. (2009). Structural, optical, and electrical characterization of ZnO and Al‐doped ZnO thin films deposited by MOCVD. Chemical Vapor Deposition, 15(10‐12), 327–333. https://doi.org/10.1002/cvde.200906790
Houng, B., Huang, C. -L., & Tsai, S. -Y. (2007). Effect of the pH on the growth and properties of sol–gel derived boron-doped ZnO transparent conducting thin film. Journal of Crystal Growth, 307(2), 328–333. https://doi.org/10.1016/j.jcrysgro.2007.07.001
Hwang, D. -H., Ahn, J. -H., Hui, K. -N., Hui, K. -S., & Son, Y. -G. (2011). Effect of oxygen partial pressure contents on the properties of Al-doped ZnO thin films prepared by radio frequency sputtering. Journal of Ceramic Processing Research, 12(2), 150-154.
Kim, H., Pique, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., & Chrisey, D. B. (1999). Indium tin oxide thin films for organic light-emitting devices. Applied Physics Letters, 74(23), 3444–3446. https://doi.org/10.1063/1.124122
Kim, M., Jang, Y. -J., Jung, H. -S., Song, W., Kang, H., Kim, E. K., Kim, D., Yi, J., & Lee, J. (2016). Influence of oxygen gas ratio on the properties of aluminum-doped zinc oxide films prepared by radio frequency magnetron sputtering. Journal of Nanoscience and Nanotechnology, 16(5), 5138–5142. https://doi.org/10.1166/jnn.2016.12227
Kumar, P. M. R., Kartha, C. S., Vijayakumar, K. P., Abe, T., Kashiwaba, Y., Singh, F., & Avasthi, D. K. (2004). On the properties of indium doped ZnO thin films. Semiconductor Science and Technology, 20(2), 120. https//doi.org/10.1088/0268-1242/20/2/003
Lai, L. -W., & Lee, C. -T. (2008). Investigation of optical and electrical properties of ZnO thin films. Materials Chemistry and Physics, 110(2–3), 393–396. https://doi.org/10.1016/j.matchemphys.2008.02.029
Lee, K. E., Wang, M., Kim, E. J., & Hahn, S. H. (2009). Structural, electrical and optical properties of sol–gel AZO thin films. Current Applied Physics, 9(3), 683–687. https://doi.org/10.1016/j.cap.2008.06.006
Li, L., Fang, L., Chen, X. M., Liu, J., Yang, F. F., Li, Q. J., Liu, G. B., & Feng, S. J. (2008). Influence of oxygen argon ratio on the structural, electrical, optical and thermoelectrical properties of Al-doped ZnO thin films. Physica E: Low-Dimensional Systems and Nanostructures, 41(1), 169–174. https://doi.org/10.1016/j.physe.2008.07.001
Lien, S. -Y. (2010). Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells. Thin Solid Films, 518(21), S10–S13. https://doi.org/10.1016/j.tsf.2010.03.023
Ma, Z. Q., & He, B. (2011). TCO-Si based heterojunction photovoltaic devices. Solar Cells—Thin-Film Technologies, InTech, 111–137. https://doi.org/10.1063/1.124122
Maldonado, F., & Stashans, A. (2010). Al-doped ZnO: Electronic, electrical and structural properties. Journal of Physics and Chemistry of Solids, 71(5), 784–787. https://doi.org/10.1016/j.jpcs.2010.02.001
Mekhnache, M., Drici, A., Hamideche, L. S., Benzarouk, H., Amara, A., Cattin, L., Bernede, J. C., & Guerioune, M. (2011). Properties of ZnO thin films deposited on (glass, ITO and ZnO: Al) substrates. Superlattices and Microstructures, 49(5), 510–518. https://doi.org/10.1016/j.spmi.2011.02.002
Muchuweni, E., Sathiaraj, T. S., & Nyakotyo, H. (2017). Effect of O2/Ar flow ratio on Ga and Al co-doped ZnO thin films by rf sputtering for optoelectronic device fabrication. Materials Research Bulletin, 95, 123–128. https://doi.org/10.1016/j.materresbull.2017.07.029
Otieno, F., Airo, M., Ganetsos, T., Erasmus, R. M., Billing, D. G., Quandt, A., & Wamwangi, D. (2019). Role of oxygen concentrations on structural and optical properties of RF magnetron sputtered ZnO thin films. Optical and Quantum Electronics, 51, 1–13. https://doi.org/10.1007/s11082-019-2076-5
Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S. -J., & Morkoç, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4). https://doi.org/10.1063/1.1992666
Pankove, J. I. (1971). Optical processes in semiconductors Prentice-Hall. New Jersey, 92, 36.
Park, J. H., Shin, J. M., Cha, S. -Y., Park, J. W., Jeong, S. -Y., Pak, H. K., & Cho, C. -R. (2006). Deposition-temperature effects on AZO thin films prepared by RF magnetron sputtering and their physical properties. Journal of the Korean Physical Society, 49(9), 584.
Suchea, M., Christoulakis, S., Katsarakis, N., Kitsopoulos, T., & Kiriakidis, G. (2007). Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films, 515(16), 6562–6566. https://doi.org/10.1016/j.tsf.2006.11.151
Vyas, S. (2020). A short review on properties and applications of zinc oxide based thin films and devices: ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors. Johnson Matthey Technology Review, 64(2), 202–218. https://doi.org/10.1595/205651320X15694993568524
Wenas, W. W., Yamada, A., Takahashi, K., Yoshino, M., & Konagai, M. (1991). Electrical and optical properties of boron‐doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition. Journal of Applied Physics, 70(11), 7119–7123. https://doi.org/10.1063/1.349794
Yun, J.-H., & Kim, J. (2012). Double transparent conducting oxide films for photoelectric devices. Materials Letters, 70, 4–6. https://doi.org/10.1016/j.matlet.2011.11.053