Factors affecting the morphology and size of silica nanoparticles as drug delivery for cancer treatment

Nguyen Thi Ngoc Tram1, , Nguyen Thi Ngoc Huyen1
1 School of Pharmacy, College of Medicine and Pharmacy, Tra Vinh University, Vietnam

Nội dung chính của bài viết

Tóm tắt

Currently, the use of nanoparticles as “carriers” to deliver drugs to the correct location has attracted the attention of scientists. Nano silica (SNs) is widely studied as material for biomedical applications. In this study, SNs particles were synthesized using the Stober method. The study investigated two factors affecting the morphology and particle size: reaction time and NH3 solution addition rate. Determining the characteristic properties of the material, methods used include transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and the N2 adsorption-desorption. SNs particles are spherical and highly homogeneous, with a 105.06 ± 0.74 nm size. The efficiency and loading capacity of Dox of SNs particles were 17.70 ± 0.52 % and 4.11 ± 0.11 %, respectively. The SNs/Dox drug carrier system has good potential for controlled drug release.

Chi tiết bài viết

Tài liệu tham khảo

Ardizzoni, A., Boni, L., Tiseo, M., Fossella, F. V., Schiller, J. H., Paesmans, M., Radosavljevic, D., Paccagnella, A., Zatloukal, P., & Mazzanti, P. (2007). Cisplatin-versus carboplatin-based chemotherapy in first-line treatment of advanced non–small-cell lung cancer: an individual patient data meta-analysis. Journal of the National Cancer Institute, 99(11), 847-857. https://doi.org/10.1093/jnci/djk196.
Chen, Y., Chen, H., Guo, L., He, Q., Chen, F., Zhou, J., Feng, J., & Shi, J. (2010). Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 4(1), 529-539. https://doi.org/10.1021/nn901398j.
Colilla, M., González, B., & Vallet-Regí, M. (2013). Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomaterials Science, 1(2), 114-134. https://doi.org/10.1039/C2BM00085G.
Corrêa, D. S., Magalhães, R. T. d., & Siqueira, D. C. B. d. (2012). In situ dry matter and fiber fraction degradability of the Mineirão stylos. Acta Scientiarum. Animal Sciences, 34, 203-207. https://doi.org/10.4025/actascianimsci.v34i2.13138
Cotí, K. K., Belowich, M. E., Liong, M., Ambrogio, M. W., Lau, Y. A., Khatib, H. A., Zink, J. I., Khashab, N. M., & Stoddart, J. F. (2009). Mechanised nanoparticles for drug delivery. Nanoscale, 1(1), 16-39. https://doi.org/10.1039/B9NR00162J.
Li, S., Wan, Q., Qin, Z., Fu, Y., & Gu, Y. (2015). Understanding Stöber silica’s pore characteristics measured by gas adsorption. Langmuir, 31(2), 824-832. https://doi.org/10.1021/la5042103.
Liu, J., Luo, Z., Zhang, J., Luo, T., Zhou, J., Zhao, X., & Cai, K. (2016). Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials, 83, 51-65. https://doi.org/10.1016/j.biomaterials.2016.01.008.
Mas, N., Galiana, I., Hurtado, S., Mondragón, L., Bernardos, A., Sancenón, F., Marcos, M. D., Amorós, P., Abril-Utrillas, N., & Martínez-Máñez, R. (2014). Enhanced antifungal efficacy of tebuconazole using gated pH-driven mesoporous nanoparticles. International Journal of Nanomedicine, 2597-2606. https://doi.org/10.2147/IJN.S59654.
Nguyen, T. N. T., Le, N. T. T., Nguyen, N. H., Ly, B. T. K., Nguyen, T. D., & Nguyen, D. H. (2020). Aminated hollow mesoporous silica nanoparticles as an enhanced loading and sustained releasing carrier for doxorubicin delivery. Microporous and Mesoporous Materials, 309, 110543. https://doi.org/10.1016/j.micromeso.2020.110543.
Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. Journal of molecular and cellular cardiology, 52(6), 1213-1225. https://doi.org/10.1016/j.yjmcc.2012.03.006.
Park, S. K., Do Kim, K., & Kim, H. T. (2002). Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 197(1-3), 7-17. https://doi.org/10.1016/S0927-7757(01)00683-5.
Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2020). Nanocarriers as an emerging platform for cancer therapy. Nano-enabled medical applications, 61-91. https://doi.org/10.1038/nnano.2007.387.
Penkova, A., Blanes, J. M., Cruz, S. A., Centeno, M., Hadjiivanov, K., & Odriozola, J. A. (2009). Gold nanoparticles on silica monospheres modified by amino groups. Microporous and Mesoporous Materials, 117(3), 530-534. https://doi.org/10.1016/j.micromeso.2008.07.041.
Rahman, I., Vejayakumaran, P., Sipaut, C., Ismail, J., Bakar, M. A., Adnan, R., & Chee, C. (2007). An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294(1-3), 102-110. https://doi.org/10.1016/j.colsurfa.2006.08.001.
Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. https://doi.org/10.1016/0021-9797(68)90272-5.
Szekeres, M., Tóth, J., & Dékány, I. (2002). Specific surface area of stoeber silica determined by various experimental methods. Langmuir, 18(7), 2678-2685. https://doi.org/10.1021/la011370j.
Tacar, O., Sriamornsak, P., & Dass, C. R. (2013). Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. Journal of Pharmacy and Pharmacology, 65(2), 157-170. https://doi.org/10.1111/j.2042-7158.2012.01567.x.
Vazquez, N. I., Gonzalez, Z., Ferrari, B., & Castro, Y. (2017). Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Boletín de la Sociedad Española de Cerámica y Vidrio, 56(3), 139-145. https://doi.org/10.1016/j.bsecv.2017.03.002.
Wu, S., Huang, X., & Du, X. (2015). pH-and redox-triggered synergistic controlled release of a ZnO-gated hollow mesoporous silica drug delivery system. Journal of Materials Chemistry B, 3(7), 1426-1432. https://doi.org/10.1039/C4TB01794C.