Adsoption of voltatile organic compounds on activated carbon surface: a DFT study

Ngoc Tri Nguyen1, , Cong Hau Ho2, Thi Hong Nhung Ngo2, Thi Tu Quyen Le2, Ngoc Thach Pham2
1 Lab of Computational Chemistry and Modelling, Faculty of Natural Sciences, Quy Nhon University, Quy Nhon City 590000, Viet Nam
2 Phòng thí nghiệm Hóa học tính toán và mô phỏng, Khoa Khoa học Tự nhiên, Trường Đại học Quy Nhơn

Main Article Content

Abstract

In this work, the shapes of stable structures for organic compounds adsorption on activated carbon (AC) surface at pure- and Fe/Zn-doped states are obtained at the PBEPBE/6-31G(d) level of theory. The binding between sites of molecules and surface is focused on ring center and functional groups. For doped surfaces (Fe@AC, Zn@AC), the stable interactions are formed favorably at Fe/Zn sites and functional groups. The adsorption energy values of molecules adsorption on surfaces range from -6.2 to -8.3 kJ.mol-1 for AC and from -7.4 to -49.3 kJ.mol-1 for Zn@AC and -166.3 to -292.7 kJ.mol-1 for Fe@AC. It is noticeable that the AIM and NBO results indicate the existence and strength of intermolecular interactions upon complexation. The H‧‧‧C*/π weak forces play an important role to the strength of configurations for AC. Besides, the O‧‧‧Fe/Zn electrostatic interactions with partly covalent nature contribute significantly to the stability of configurations for Fe/Zn doped AC. The addition of Fe onto AC enhances the adsorption ability of organic molecules as compared to Zn-doping. 

Article Details

References

Aksu, Z., & Yener, J. (2001). A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manage, 21(8), 695-702. https://doi.org/10.1016/S0956-053X(01)00006-X.
Almujaybil, M. J., Abunaser, D. F. M., Gouda, M., Khalaf, M. M., Mohamed, I. M. A., El-Lateef, & H. M. A. (2022). Facile Synthesis of Fe(0)@Activated Carbon Material as an Active Adsorbent towards the Removal of Cr (VI) from Aqueous Media. Catalysts, 12, 515. https://doi.org/10.3390/catal12050515.
Chen, T., Fu, C., Liu, Y., Pan, F., Wu, F., You, Z., & Li, J. (2021). Adsorption of volatile organic compounds by mesoporous graphitized carbon: Enhanced organophilicity, humidity resistance, and mass transfer. Separation and Purification Technology, 264, 118464. https://doi.org/10.1016/j.seppur.2021.118464.
Chen, X., Xu, L., Liu, L. L., Zhao, L. S., Chen, C. P., Zhang, Y., & Wang, X. C. (2017). Adsorption of formaldehyde molecule on the pristine and transition metal doped graphene: First-principles study. Applied Surface Science, 396, 1020–1025. https://doi.org/10.1016/j.apsusc.2016.11.080.
Dronskowski, R. (2006). Computational Chemistry of Solid State Materials: A Guide for Materials Scientists, Chemists, Physicists and Others. Germany, Wiley‐VCH Verlag GmbH & Co. KGaA.
Dursun, G., Cicek, H., & Dursun, A. (2005). Adsorption of phenol from aqueous solution by using carbonised beet pulp. J. Hazard. Mater. B, 125(1-3), 175–182. https://doi.org/10.1016/j.jhazmat.2005.05.023.
Fan, X., Zhao J., Cheng C., Xu, Y., & Zhang, H. (2023). Engineered Fe-doped activated carbon from industry waste for peroxymonosulfate activation: Performance and mechanism. Separation and Purification Technology, 325, 124607. https://doi.org/10.1016/j.seppur.2023.124607.
Fatemeh, S., Negar, S., Worawit, W., Ronbanchob, A., & Aree, C. (2024). Adsorption of volatile organic compounds on biochar: A review. Process Safety and Environmental Protection, 182, 559–578. https://doi.org/10.1016/j.psep.2023.11.071.
Frisch, M. J. et al. (2010). Gaussian 09. US: Gaussian, Inc., Wallingford CT.
Gao, X., Zhou, Q., Wang, J., Xu, L., & Zeng, W. (2020). Adsorption of SO2 molecule on Ni-doped and Pd-doped graphene based on first-principle study. Applied Surface Science, 517, 146180. https://doi.org/10.1016/j.apsusc.2020.146180.
Goncharuk, V. V., Kucheruk, D. D., Kochkodan, V. M., & Badekha, V. P. (2002). Removal of organic substances from aqueous solutions by reagent enhanced reverse osmosis. Desalination, 143(1), 45-51. https://doi.org/10.1016/S0011-9164(02)00220-5.
Hamid, R., Mojgan, H. M., Parthasarathi, M., Amanda, L.-L., & Majid, S. (2020). Emissions of volatile organic compounds from crude oil processing – Global emission inventory and environmental release. Science of the Total Environment, 727, 138654. https://doi.org/10.1016/j.scitotenv.2020.138654.
Le, M. C., Le, V. K., & Nguyen, N. H. (2013). Theoretical study on the adsorption of phenol on activated carbon using density functional theory. J. Mol. Model., 19, 4395-4402. https://doi.org/10.1007/s00894-013-1950-5.
Nguyen, N. H., Nguyen, T. T. H., Le, V. K., & Le, M. C. (2015). Theoretical study of carbon dioxide activation by metals (Co, Cu, Ni) supported on activated carbon. Journal of Molecular Modeling, 21(322), 1-9. https://doi.org/10.1007/s00894-015-2864-1.
Park, K. H., Balathanigaimani, M. S., Shim, W. G., Lee, J. W., & Moon, H. (2010). Adsorption characteristics of phenol on novel corn grain-based activated carbons. Microporous and Mesoporous Materials, 127(1-2), 1-8. https://doi.org/10.1016/j.micromeso.2009.06.032.
Popelier, P. L. A. (2000). Atom in Molecules. UK: Pearson Education Ltd., Essex.
Rengaraj, S., Moon, S. H., Sivabalan, R., Arabindoo, B., & Murugesan, V. (2002). Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manage, 22(5), 543-548. https://doi.org/10.1016/S0956-053X(01)00016-2.
Salame, I. I., & Bandosz, T. J. (2003). Role of surface chemistry in adsorption of phenol on activated carbons. J. Colloid. Interface. Sci, 264(2), 307-312. https://doi.org/10.1016/S0021-9797(03)00420-X.
Shen, H., Zou, X., Yang, H., Zhong, W., Wang, Y., Wang, S., & Deng, M. (2021). Adsorption of Organic Molecules and Surfactants on Graphene: A Coarse-Grained Study. The Journal of Physical Chemistry A, 125(2), 700–711. https://doi.org/10.1021/acs.jpca.0c11111.
Timothy, O. A., Opeyemi, A. O., & Damian, C. O. (2021). Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. FlatChem, 29, 100277. https://doi.org/10.1016/j.flatc.2021.100277.
Wagner, R., Bag, S., Trunzer, T., Garcia, P. F., Wenzel, W., Berensmeier, S., & Franzreb, M. (2021). Adsorption of organic molecules on carbon surfaces: Experimental data and molecular dynamics simulation considering multiple protonation states. Journal of Colloid and Interface Science, 589, 424–437. https://doi.org/10.1016/j.jcis.2020.12.107.
Weinhold, F. et al. (2001). GenNBO 5.G. US: Theoretical Chemistry Institute, University of Wisconsin: Madison, WI.
Xiao, W., Jiang, X., Liu, X., Zhou, W., Garba, Z. N., Lawan, I., & Yuan, Z. (2020). Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. Journal of Cleaner Production, 124773. https://doi.org/10.1016/j.jclepro.2020.124773.
Yafei, S. (2023). Biomass-derived porous carbons for sorption of Volatile organic compounds (VOCs). Fuel, 336, 126801. https://doi.org/10.1016/j.fuel.2022.126801.
Zhou, J., Saeidi, N., Wick, L. Y., Kopinke, F. D., & Georgi, A. (2021). Adsorption of polar and ionic organic compounds on activated carbon: Surface chemistry matters. Science of the Total Environment, 794, 148508. https://doi.org/10.1016/j.scitotenv.2021.148508.
Zhou, K., Ma, W., Zeng, Z., Ma, X., Xu, X., Guo, Y., & Li, L. (2019). Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chemical Engineering Journal, 372, 1122-113. https://doi.org/10.1016/j.cej.2019.04.218.