Adsoption of voltatile organic compounds on activated carbon surface: a DFT study
Main Article Content
Abstract
In this work, the shapes of stable structures for organic compounds adsorption on activated carbon (AC) surface at pure- and Fe/Zn-doped states are obtained at the PBEPBE/6-31G(d) level of theory. The binding between sites of molecules and surface is focused on ring center and functional groups. For doped surfaces (Fe@AC, Zn@AC), the stable interactions are formed favorably at Fe/Zn sites and functional groups. The adsorption energy values of molecules adsorption on surfaces range from -6.2 to -8.3 kJ.mol-1 for AC and from -7.4 to -49.3 kJ.mol-1 for Zn@AC and -166.3 to -292.7 kJ.mol-1 for Fe@AC. It is noticeable that the AIM and NBO results indicate the existence and strength of intermolecular interactions upon complexation. The H‧‧‧C*/π weak forces play an important role to the strength of configurations for AC. Besides, the O‧‧‧Fe/Zn electrostatic interactions with partly covalent nature contribute significantly to the stability of configurations for Fe/Zn doped AC. The addition of Fe onto AC enhances the adsorption ability of organic molecules as compared to Zn-doping.
Keywords
DFT, Adsorption, VOC, Activated carbon.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Almujaybil, M. J., Abunaser, D. F. M., Gouda, M., Khalaf, M. M., Mohamed, I. M. A., El-Lateef, & H. M. A. (2022). Facile Synthesis of Fe(0)@Activated Carbon Material as an Active Adsorbent towards the Removal of Cr (VI) from Aqueous Media. Catalysts, 12, 515. https://doi.org/10.3390/catal12050515.
Chen, T., Fu, C., Liu, Y., Pan, F., Wu, F., You, Z., & Li, J. (2021). Adsorption of volatile organic compounds by mesoporous graphitized carbon: Enhanced organophilicity, humidity resistance, and mass transfer. Separation and Purification Technology, 264, 118464. https://doi.org/10.1016/j.seppur.2021.118464.
Chen, X., Xu, L., Liu, L. L., Zhao, L. S., Chen, C. P., Zhang, Y., & Wang, X. C. (2017). Adsorption of formaldehyde molecule on the pristine and transition metal doped graphene: First-principles study. Applied Surface Science, 396, 1020–1025. https://doi.org/10.1016/j.apsusc.2016.11.080.
Dronskowski, R. (2006). Computational Chemistry of Solid State Materials: A Guide for Materials Scientists, Chemists, Physicists and Others. Germany, Wiley‐VCH Verlag GmbH & Co. KGaA.
Dursun, G., Cicek, H., & Dursun, A. (2005). Adsorption of phenol from aqueous solution by using carbonised beet pulp. J. Hazard. Mater. B, 125(1-3), 175–182. https://doi.org/10.1016/j.jhazmat.2005.05.023.
Fan, X., Zhao J., Cheng C., Xu, Y., & Zhang, H. (2023). Engineered Fe-doped activated carbon from industry waste for peroxymonosulfate activation: Performance and mechanism. Separation and Purification Technology, 325, 124607. https://doi.org/10.1016/j.seppur.2023.124607.
Fatemeh, S., Negar, S., Worawit, W., Ronbanchob, A., & Aree, C. (2024). Adsorption of volatile organic compounds on biochar: A review. Process Safety and Environmental Protection, 182, 559–578. https://doi.org/10.1016/j.psep.2023.11.071.
Frisch, M. J. et al. (2010). Gaussian 09. US: Gaussian, Inc., Wallingford CT.
Gao, X., Zhou, Q., Wang, J., Xu, L., & Zeng, W. (2020). Adsorption of SO2 molecule on Ni-doped and Pd-doped graphene based on first-principle study. Applied Surface Science, 517, 146180. https://doi.org/10.1016/j.apsusc.2020.146180.
Goncharuk, V. V., Kucheruk, D. D., Kochkodan, V. M., & Badekha, V. P. (2002). Removal of organic substances from aqueous solutions by reagent enhanced reverse osmosis. Desalination, 143(1), 45-51. https://doi.org/10.1016/S0011-9164(02)00220-5.
Hamid, R., Mojgan, H. M., Parthasarathi, M., Amanda, L.-L., & Majid, S. (2020). Emissions of volatile organic compounds from crude oil processing – Global emission inventory and environmental release. Science of the Total Environment, 727, 138654. https://doi.org/10.1016/j.scitotenv.2020.138654.
Le, M. C., Le, V. K., & Nguyen, N. H. (2013). Theoretical study on the adsorption of phenol on activated carbon using density functional theory. J. Mol. Model., 19, 4395-4402. https://doi.org/10.1007/s00894-013-1950-5.
Nguyen, N. H., Nguyen, T. T. H., Le, V. K., & Le, M. C. (2015). Theoretical study of carbon dioxide activation by metals (Co, Cu, Ni) supported on activated carbon. Journal of Molecular Modeling, 21(322), 1-9. https://doi.org/10.1007/s00894-015-2864-1.
Park, K. H., Balathanigaimani, M. S., Shim, W. G., Lee, J. W., & Moon, H. (2010). Adsorption characteristics of phenol on novel corn grain-based activated carbons. Microporous and Mesoporous Materials, 127(1-2), 1-8. https://doi.org/10.1016/j.micromeso.2009.06.032.
Popelier, P. L. A. (2000). Atom in Molecules. UK: Pearson Education Ltd., Essex.
Rengaraj, S., Moon, S. H., Sivabalan, R., Arabindoo, B., & Murugesan, V. (2002). Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manage, 22(5), 543-548. https://doi.org/10.1016/S0956-053X(01)00016-2.
Salame, I. I., & Bandosz, T. J. (2003). Role of surface chemistry in adsorption of phenol on activated carbons. J. Colloid. Interface. Sci, 264(2), 307-312. https://doi.org/10.1016/S0021-9797(03)00420-X.
Shen, H., Zou, X., Yang, H., Zhong, W., Wang, Y., Wang, S., & Deng, M. (2021). Adsorption of Organic Molecules and Surfactants on Graphene: A Coarse-Grained Study. The Journal of Physical Chemistry A, 125(2), 700–711. https://doi.org/10.1021/acs.jpca.0c11111.
Timothy, O. A., Opeyemi, A. O., & Damian, C. O. (2021). Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. FlatChem, 29, 100277. https://doi.org/10.1016/j.flatc.2021.100277.
Wagner, R., Bag, S., Trunzer, T., Garcia, P. F., Wenzel, W., Berensmeier, S., & Franzreb, M. (2021). Adsorption of organic molecules on carbon surfaces: Experimental data and molecular dynamics simulation considering multiple protonation states. Journal of Colloid and Interface Science, 589, 424–437. https://doi.org/10.1016/j.jcis.2020.12.107.
Weinhold, F. et al. (2001). GenNBO 5.G. US: Theoretical Chemistry Institute, University of Wisconsin: Madison, WI.
Xiao, W., Jiang, X., Liu, X., Zhou, W., Garba, Z. N., Lawan, I., & Yuan, Z. (2020). Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. Journal of Cleaner Production, 124773. https://doi.org/10.1016/j.jclepro.2020.124773.
Yafei, S. (2023). Biomass-derived porous carbons for sorption of Volatile organic compounds (VOCs). Fuel, 336, 126801. https://doi.org/10.1016/j.fuel.2022.126801.
Zhou, J., Saeidi, N., Wick, L. Y., Kopinke, F. D., & Georgi, A. (2021). Adsorption of polar and ionic organic compounds on activated carbon: Surface chemistry matters. Science of the Total Environment, 794, 148508. https://doi.org/10.1016/j.scitotenv.2021.148508.
Zhou, K., Ma, W., Zeng, Z., Ma, X., Xu, X., Guo, Y., & Li, L. (2019). Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chemical Engineering Journal, 372, 1122-113. https://doi.org/10.1016/j.cej.2019.04.218.