Teaching parametric equations of a line in space using Toulmin’s model integrated with analogical reasoning

Huynh Trong Duc Nguyen1, , Viet Minh Triet Le2, Phu Loc Nguyen2
1 PhD Candidate, School of Education, Can Tho University, Vietnam
2 Trường Sư Phạm, Trường Đại học Cần Thơ, Việt Nam

Main Article Content

Abstract

Reviewing relevant documents on reasoning abilities, teaching methods, and the requirements to teaching the topic "Coordinate method in space" under the current general education program, this study proposes a pedagogical solution to organize teaching activities on the topic "Parametric equations of a straight line" (Math 12) towards developing ability. On a clear lesson plan and a set of detailed assessment criteria, the study demonstrates the potential of this integration in fostering students' mathematical reasoning ability when transforming their perception of "Parametric equations of a straight line" from two dimensions to three dimensions. Although experiments have not been conducted, this approach provides teachers with a teaching process with a solid theoretical basis, contributing to supporting the process of fostering students' mathematical reasoning ability. However, it is necessary to conduct pedagogical experiments to verify the effectiveness of the model, and at the same time consider adjusting and expanding its application to other mathematical topics.

Article Details

References

Adal, A. A. (2023). An analysis of postgraduate theses using Toulmin argumentation model in the field of mathematics education in Turkey. International Journal of Field Education, 9(1), 16-37. https://doi.org/10.32570/ijofe.1257339
Bộ Giáo dục và Đào tạo. (2018). Thông tư 32/2018/TT-BGDĐT: Chương trình giáo dục phổ thông môn Toán. Hà Nội.
Bredow, F., & Knipping, C. (2022). How teachers address process-product dualities in mathematical argumentation processes. HAL Open Science. Truy cập từ https://hal.science/hal-03740312v2
Daugherty, J., & Mentzer, N. (2008). Analogical reasoning in the engineering design process and technology education applications. Journal of Technology Education, 19(2), 7-21. https://doi.org/10.21061/jte.v19i2.a.1
Đoàn, T. P., & Lê, V. M. T. (2024). Phát triển năng lực tư duy phản biện cho học sinh bằng hình thức tranh luận trong dạy học quan hệ vuông góc trong không gian. Tạp chí Khoa học Đại học Cần Thơ, 60 (CĐ Giáo dục Đồng bằng sông Cửu Long), 52-62. https://doi.org/10.22144/ctujos.2024.283
Dwirahayu, G., Mubasyiroh, S. M., & Mas’ud, A. (2017). The effectiveness of teaching with analogy on students’ mathematical representation of derivative concept. In Proceedings of the International Conference on Education in Muslim Society (ICEMS 2017), 57- 60. Atlantis Press. https://doi.org/10.2991/icems-17.2018.12
Gentner, D. (1983). Structure‐mapping: A theoretical framework for analogy. Cognitive Science, 7(2), 155-170. https://doi.org/10.1207/s15516709cog0702_3
Glynn, S. M. (1994). Teaching science with analogy: A strategy for teachers and textbook authors (ED373306). ERIC. https://files.eric.ed.gov/fulltext/ED373306.pdf
Hồ, V. C. (2016). Phân tích quá trình lập luận và chứng minh của học sinh khi học hình học không gian. Đại học Huế, Việt Nam.
Karbach, J. (1987). Using Toulmin's model of argumentation. Journal of Teaching Writing, 6(1), 81-91.
Katz, B. P., Thoren, E., & Hernandez, V. (2022). Why Should that Convince Me?: Teaching Toulmin Analysis Across the Curriculum. PRIMUS, 33(3), 285 -313. https://doi.org/10.1080/10511970.2022.2068093
Knipping, C. (2003). Argumentation structures in classroom proving situations. Proceedings of the Third Conference of the European Society in Mathematics Education. Italy: ERME.
Komatsu, K., & Jones, K. (2021). Generating mathematical knowledge in the classroom through proof, refutation, and abductive reasoning. Educational Studies in Mathematics, 109(3), 567-591. https://doi.org/10.1007/s10649-021-10086-5
Nguyễn, P. L. (2010). Dạy học hiệu quả môn Giải tích trong trường phổ thông. Hà Nội: NXB Giáo dục Việt Nam.
Nguyễn, T. D. N. (2021). Sử dụng biểu diễn trực quan phát triển năng lực suy luận toán học thông qua dạy hình học lớp 9 . Trường Đại học Thái Nguyên, Việt Nam.
Nguyễn, T. N. (2015). Sử dụng mô hình toulmin để phân tích quá trình lập luận và chứng minh của học sinh. Đại học Huế, Việt Nam.
Pedemonte, B. (2018). Strategic vs Definitory Rules: Their Role in Abductive Argumentation and their Relationship with Deductive Proof. Eurasia Journal of Mathematics, Science and Technology Education, 14(9), em1589. https://doi.org/10.29333/ejmste/92562
Toulmin, S. (2003). The uses of argument. UK: Cambridge University Press.
Trần, T., & Nguyễn, D. N. (2011). Abductive argumentation for proving in dynamic geometry environment. The 2nd Academic Conference on Natural Science for Master and PhD Students from Cambodia, Laos, Malaysia and Vietnam, 137-142. Hà Nội: Nhà xuất bản Khoa học tự nhiên và Công nghệ.
Urhan, S., & Zengin, Y. (2023). Investigating university students’ argumentations and proofs using dynamic mathematics software in collaborative learning, debate, and self-reflection stages. International Journal of Research in Undergraduate Mathematics Education, 10(2), 380-407. https://doi.org/10.1007/s40753-022-00207-7
Yang, R., & Pan, H. (2023). Whole-to-Part Argumentation Instruction: An action research study aimed at improving Chinese college students’ English argumentative writing based on the Toulmin model. SAGE Open, 13(4), 1-15. https://doi.org/10.1177/21582440231207738