Cluster Isotherm Analysis and Quantum Structural Optimization of L-Proline on MKN-SWCNT S1 carbon nanotubes
Main Article Content
Abstract
In this study, the adsorption isotherm of L-proline on MKN-SWCNT S1 single-walled carbon nanotubes was constructed. The cluster adsorption model was used to analyze the experimental isotherm. The results showed that L-proline was adsorbed in the form of a monomer and a cluster composed of 6–7 monomers. Quantum chemical methods were used to optimize the structure and determine the basic parameters of the adsorption system. The results showed that the most likely mechanism for immobilizing amino acids on the carbon nanotube surface is Van der Waals interaction.
Keywords
hấp phụ, hóa lượng tử, L-proline, mô hình cụm, nano carbon.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Atsushi, H., Tomoshi, K. (2021). Aromaphilicity Index of Amino Acids: Molecular Dynamics Simulations of the Protein Binding Affinity for Carbon Nanomaterials. ACS Applied Nano Materials, 4(3), 2486–2495. https://doi.org/10.1021/acsanm.0c03047.
Barrett, G. (1985). Chemistry and biochemistry of the amino acids. Springer Dordrecht. https://doi.org/10.1007/978-94-009-4832-7.
Butyrskaya, E.V., Zapryagaev, S.A., Izmailova, E.A. (2019). Cooperative model of the histidine and alanine adsorption on single-walled carbon nanotubes. Carbon, 143, 276–287. https://doi.org/10.1016/j.carbon.2018.10.086.
Butyrskaya, E.V., Le, D.T., Volkov, A.A. (2024). Quantum-chemical modeling of sorption interactions of histidine enantiomers with carbon nanotubes. Sorbtsionnye i Khromatograficheskie Protsessy, 24(1), 11–22. https://doi.org/10.17308/sorpchrom.2024.24/11929.
Butyrskaya, E.V., Le, D.T., Volkov, A.A. (2024). Cluster adsorption of histidine enantiomers on carbon nanotubes from aqueous solutions. Sorbtsionnye i Khromatograficheskie Protsessy, 24(1): 23–33. https://doi.org/10.17308/sorpchrom.2024.24/11930.
Collins, P.G. (2010). Defects and disorder in carbon nanotubes. University of California at Irvine, Irvine, USA.
Dukovic, G., Balaz, M., Doak, P., Berova, N.D., Zheng, M., Mclean, R.S., Brus, L.E. (2006). Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. Journal of the American Chemical Society, 128(28), 9004–9005. https://doi.org/10.1021/ja062095w.
Frank, L.P. (1961). Bond-order/bond-length and bond-energy/bond-length relations for carbon-oxygen bonds. Journal of Molecular Spectroscopy, 5(6), 72–77. https://doi.org/10.1016/0022-2852(61)90068-6.
Lakhdar, S.S., Nassira, O., Dalila, B., Isabelle, H., Yann, D., Hammouche, A. (2021). Carbon Nanotubes (CNTs) from Synthesis to Functionalized (CNTs) Using Conventional and New Chemical Approaches. Journal of Nanomaterials, 2021, 1-31. https://doi.org/10.1155/2021/4972770.
Le, D.T., Butyrskaya, E.V., Eliseeva, T.V. (2022). Cluster Adsorption of L-Histidine on Carbon Nanotubes in Aqueous Solutions at Different Temperatures. Russian Journal of Physical Chemistry A, 96(8), 1719–1723. https://doi.org/10.31857/S004445372208012X.
Le, D.T., Butyrskaya, E.V., Eliseeva, T.V. (2021). Sorption interaction between carbon nanotubes and histidine enantiomers in aqueous solutions. Russian Journal of Physical Chemistry A, 95(11), 2280–2286. https://doi.org/10.1134/S003602442111011X.
Le, D.T., Butyrskaya, E.V., Volkov, A.A., Gneushev, A.S. (2022). Study of adsorption of histidine enantiomers on carbon nanotubes in aqueous solution based on different adsorption models. Sorbtsionnye i Khromatograficheskie Protsessy, 22(3), 235–242. https://doi.org/10.17308/sorpchrom.2022.22/9330.
Le, D.T., Chu, A.V. (2024). Study on the adsorption L- and D- proline on MKN-MWCNT-P5000 carbon nanotubes from aqueous solutions. HPU2 Journal of Science: Natural Sciences and Technology, 3(2), 50–58. https://doi.org/10.56764/hpu2.jos.2024.3.2.50-58.
Mengzhuan, L., Zhongjie, Z., Li, Y., Mingshan, L., Lihua, F., Baofeng, L., Chuanhui, X. (2022). A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection. Advanced Materials, 34, 2107309. https://doi.org/10.1002/adma.202107309.
Muhammad, S., Mohammad, A., Nadeem, B., Muhamed, K., Ihsanullah, I., Abdul, W.M. (2022). Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 47, 102815. https://doi.org/10.1016/j.jwpe.2022.102815.
Qiu, H., Yang, J. (2017). Structure and properties of carbon nanotubes. Industrial Applications of Carbon Nanotubes, 47–69. https://doi.org/10.1016/B978-0-323-41481-4.00002-2.
Socas, R.B., Herrera, A.V., Asensio, R.M., Hernndez, B.J. (2014). Recent applications of carbon nanotube sorbents in analytical chemistry. Journal of Chromatography A, 1357, 110–146. https://doi.org/10.1016/j.chroma.2014.05.035.
Speltini, A., Merli, D., Dondi, D., Paganini, G., Profumo, A. (2012). Improving selectivity in gas chromatography by using chemically modified multi-walled carbon nanotubes as stationary phase, Analytical and Bioanalytical Chemistry, 403(4), 1157–1165. https://doi.org/10.1007/s00216-011-5606-y.
Speltini, A., Merli, D., Profumo, A. (2013). Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: A review, Analytica Chimica Acta, 783, 1–16. https://doi.org/10.1016/j.aca.2013.03.041.
Sukhno, I.V., Buzko, V.Y. (2008). Carbon nanotubes. Krasnodar: KubSU Publishing House.
Trotter, J. (1960). Bond lengths in benzene derivatives: Hybridization or resonance. Tetrahedron, 8(1–2), 13–22. https://doi.org/10.1016/S0040-4020(01)93325-3.