Phân tích đẳng nhiệt hấp phụ cụm và tối ưu hóa cấu trúc lượng tử của L-Proline trên ống nano carbon đơn vách MKN-SWCNT S1
Nội dung chính của bài viết
Tóm tắt
Trong nghiên cứu này, đường đẳng nhiệt hấp phụ L-proline bởi ống nano carbon đơn vách MKN-SWCNT S1 đã được xây dựng. Mô hình hấp phụ cụm đã được sử dụng để phân tích đường đẳng nhiệt thực nghiệm. Kết quả cho thấy L-proline được hấp phụ ở dạng monomer và dạng cụm gồm 6 đến 7 đơn phân. Phương pháp tính toán hóa lượng tử đã được sử dụng để tối ưu hóa cấu trúc và xác định các thông số cơ bản của hệ hấp phụ. Kết quả cho thấy cơ chế có khả năng nhất để cố định amino acid trên bề mặt ống nano carbon là tương tác Van der Waals.
Từ khóa
hấp phụ, hóa lượng tử, L-proline, mô hình cụm, nano carbon.
Chi tiết bài viết

Bài báo này được cấp phép theo Creative Commons Attribution-NonCommercial 4.0 International License.
Tài liệu tham khảo
Atsushi, H., Tomoshi, K. (2021). Aromaphilicity Index of Amino Acids: Molecular Dynamics Simulations of the Protein Binding Affinity for Carbon Nanomaterials. ACS Applied Nano Materials, 4(3), 2486–2495. https://doi.org/10.1021/acsanm.0c03047.
Barrett, G. (1985). Chemistry and biochemistry of the amino acids. Springer Dordrecht. https://doi.org/10.1007/978-94-009-4832-7.
Butyrskaya, E.V., Zapryagaev, S.A., Izmailova, E.A. (2019). Cooperative model of the histidine and alanine adsorption on single-walled carbon nanotubes. Carbon, 143, 276–287. https://doi.org/10.1016/j.carbon.2018.10.086.
Butyrskaya, E.V., Le, D.T., Volkov, A.A. (2024). Quantum-chemical modeling of sorption interactions of histidine enantiomers with carbon nanotubes. Sorbtsionnye i Khromatograficheskie Protsessy, 24(1), 11–22. https://doi.org/10.17308/sorpchrom.2024.24/11929.
Butyrskaya, E.V., Le, D.T., Volkov, A.A. (2024). Cluster adsorption of histidine enantiomers on carbon nanotubes from aqueous solutions. Sorbtsionnye i Khromatograficheskie Protsessy, 24(1): 23–33. https://doi.org/10.17308/sorpchrom.2024.24/11930.
Collins, P.G. (2010). Defects and disorder in carbon nanotubes. University of California at Irvine, Irvine, USA.
Dukovic, G., Balaz, M., Doak, P., Berova, N.D., Zheng, M., Mclean, R.S., Brus, L.E. (2006). Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. Journal of the American Chemical Society, 128(28), 9004–9005. https://doi.org/10.1021/ja062095w.
Frank, L.P. (1961). Bond-order/bond-length and bond-energy/bond-length relations for carbon-oxygen bonds. Journal of Molecular Spectroscopy, 5(6), 72–77. https://doi.org/10.1016/0022-2852(61)90068-6.
Lakhdar, S.S., Nassira, O., Dalila, B., Isabelle, H., Yann, D., Hammouche, A. (2021). Carbon Nanotubes (CNTs) from Synthesis to Functionalized (CNTs) Using Conventional and New Chemical Approaches. Journal of Nanomaterials, 2021, 1-31. https://doi.org/10.1155/2021/4972770.
Le, D.T., Butyrskaya, E.V., Eliseeva, T.V. (2022). Cluster Adsorption of L-Histidine on Carbon Nanotubes in Aqueous Solutions at Different Temperatures. Russian Journal of Physical Chemistry A, 96(8), 1719–1723. https://doi.org/10.31857/S004445372208012X.
Le, D.T., Butyrskaya, E.V., Eliseeva, T.V. (2021). Sorption interaction between carbon nanotubes and histidine enantiomers in aqueous solutions. Russian Journal of Physical Chemistry A, 95(11), 2280–2286. https://doi.org/10.1134/S003602442111011X.
Le, D.T., Butyrskaya, E.V., Volkov, A.A., Gneushev, A.S. (2022). Study of adsorption of histidine enantiomers on carbon nanotubes in aqueous solution based on different adsorption models. Sorbtsionnye i Khromatograficheskie Protsessy, 22(3), 235–242. https://doi.org/10.17308/sorpchrom.2022.22/9330.
Le, D.T., Chu, A.V. (2024). Study on the adsorption L- and D- proline on MKN-MWCNT-P5000 carbon nanotubes from aqueous solutions. HPU2 Journal of Science: Natural Sciences and Technology, 3(2), 50–58. https://doi.org/10.56764/hpu2.jos.2024.3.2.50-58.
Mengzhuan, L., Zhongjie, Z., Li, Y., Mingshan, L., Lihua, F., Baofeng, L., Chuanhui, X. (2022). A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection. Advanced Materials, 34, 2107309. https://doi.org/10.1002/adma.202107309.
Muhammad, S., Mohammad, A., Nadeem, B., Muhamed, K., Ihsanullah, I., Abdul, W.M. (2022). Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 47, 102815. https://doi.org/10.1016/j.jwpe.2022.102815.
Qiu, H., Yang, J. (2017). Structure and properties of carbon nanotubes. Industrial Applications of Carbon Nanotubes, 47–69. https://doi.org/10.1016/B978-0-323-41481-4.00002-2.
Socas, R.B., Herrera, A.V., Asensio, R.M., Hernndez, B.J. (2014). Recent applications of carbon nanotube sorbents in analytical chemistry. Journal of Chromatography A, 1357, 110–146. https://doi.org/10.1016/j.chroma.2014.05.035.
Speltini, A., Merli, D., Dondi, D., Paganini, G., Profumo, A. (2012). Improving selectivity in gas chromatography by using chemically modified multi-walled carbon nanotubes as stationary phase, Analytical and Bioanalytical Chemistry, 403(4), 1157–1165. https://doi.org/10.1007/s00216-011-5606-y.
Speltini, A., Merli, D., Profumo, A. (2013). Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: A review, Analytica Chimica Acta, 783, 1–16. https://doi.org/10.1016/j.aca.2013.03.041.
Sukhno, I.V., Buzko, V.Y. (2008). Carbon nanotubes. Krasnodar: KubSU Publishing House.
Trotter, J. (1960). Bond lengths in benzene derivatives: Hybridization or resonance. Tetrahedron, 8(1–2), 13–22. https://doi.org/10.1016/S0040-4020(01)93325-3.