Investigation of antioxidant activity and pancreatic lipase inhibitory potential of Ipomoea batatas L. extracts

Thị Phương Thảo Trương1, , Thi Cam Tu Phan1
1 Trường Đại học Cần Thơ

Main Article Content

Abstract

This study evaluated the antioxidant activity and pancreatic lipase inhibitory potential of ethanol extracts from three parts (stem, leaf, and sprout) of sweet potato (Ipomoea batatas L.). The ethanol extracts were quantified for total polyphenol content (TPC) and total flavonoid content (TFC), and their antioxidant activities were assessed using DPPH, ABTS, and ferric reducing antioxidant power (FRAP) assays. Pancreatic lipase inhibitory activity was determined in vitro using p-nitrophenyl laurate as a substrate, and further validated in vivo in Mus musculus mice through a lipid absorption test. The leaf extract demonstrated superior results compared to the stem and sprout extracts in terms of both compound content and antioxidant activity (TPC: 279.4 ± 1.83 mg GAE/g; TFC: 85.7 ± 1.21 mg QE/g; IC₅₀ ABTS: 47.33 ± 0.72 µg/mL; IC₅₀ DPPH: 80.86 ± 3.13 µg/mL). Notably, the leaf extract also exhibited the strongest pancreatic lipase inhibitory activity (IC₅₀ = 134.68 ± 1.27 µg/mL), being only approximately 2.3 times less potent than the positive control, orlistat. In vivo experiments confirmed that the leaf extract significantly reduced plasma triglyceride levels in mice after lipid emulsion administration, comparable to the effect of orlistat. These findings indicate that sweet potato leaves are a potential plant source rich in polyphenol and flavonoid compounds with considerable antioxidant and lipid-digesting enzyme inhibitory activities, providing a scientific basis for the development of formulations to aid in the management of obesity and lipid metabolism disorders.

Article Details

References

Aissata, K.M., Wenping, L., Lamine, T.S., Barra, C.J., & Sidikiba, S. (2019). Effect of selected plant extracts on pancreatic lipase inhibition, pancreatic cholesterol esterase activities and cholesterol micellization. J. Acad. Ind. Res, 7, 150. http://jairjp.com/APRIL%202019/02%20KABA%20RESEARCH%20ARTICLE-JAIR%20APRIL%20ISSUE.pdf
Bag, G.C., Devi P.G., & Bhaigyabati T. (2015). Assessment of total flavonoid content and antioxidant activity of methanolic rhizome extract of three Hedychium species of Manipur valley. International Journal of Pharmaceutical Sciences Review and Research, 30(1), 154-159. http://globalresearchonline.net/journalcontents/v30-1/28.pdf
Birari, R. B., & Bhutani, K. K. (2007). Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discovery Today, 12(19-20), 879–889. https://doi.org/10.1016/j.drudis.2007.07.024
Cheng, C., Li, Z., Zhao, X., Liao, C., Quan, J., Bode, A.M., Cao, Y., & Luo, X. (2020). Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. European Journal of Pharmacology, 870, 172922. https://doi.org/10.1016/j.ejphar.2020.172922
Das, S., & Das, S. (2010). Comparative evaluation of antioxidant activity and phytochemical contents of leaf, stem and root extracts of medicinal plants. Journal of Medicinal Plants Research, 4(23), 2474–2477. https://doi.org/10.5530/pj.2012.30.7
Doan, T. T., Nguyen, M. H., & Le, T. D. (2022). Evaluation of phytochemical composition and antioxidant activity of purple sweet potato (Ipomoea batatas L.) leaves grown in Vietnam. Vietnam Journal of Agricultural Sciences, 20(2), 45–53. https://doi.org/10.31817/vjas.2022.20.2.06
Heck, A. M., Yanovski, J. A., & Calis, K. A. (2000). Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 20(3), 270–279. https://doi.org/10.1592/phco.20.4.270.34884
Hou, X.D., Qin, X.Y., Hou, J., Tang, H., & Ge, G.B. (2022). The potential of natural sources for pancreatic lipase inhibitors: a solution of the obesity crisis?. Expert Opinion on Drug Discovery, 17(12), 1295-1298. https://doi.org/10.1080/17460441.2023.2156499
Islam, M. S., Yoshimoto, M., Yahara, S., & Yamakawa, O. (2020). Antioxidant compounds from sweet potato (Ipomoea batatas L.) leaves. Food Chemistry, 91(1), 79–83. https://doi.org/10.1016/j.foodchem.2004.05.058
Jaradat, N., Zaıd, A.N., & Zaghal, E.Z. (2017). Anti-lipase activity for Portulaca oleracea, Urtica urens, Brassica napus and Lathyrus hierosolymitanus wild plants from Palestine. Marmara Pharmaceutical Journal, 21(4), 828-836. DOI: 10.12991/mpj.2017.9
Jeyadevi, R., Sivasudha, T., Ilango, K., & Karthikeyan, M. (2019). Antioxidant and free radical scavenging activity of Ipomoea staphylina Linn. Indian Journal of Pharmaceutical Sciences, 81(2), 342–348. https://doi.org/10.36468/pharmaceutical-sciences.513
Jung, Y., Lim, Y., & Kim, J. (2019). Sweet potato (Ipomoea batatas L.) leaf extract reduces adipogenesis and inflammation in 3T3-L1 adipocytes and high-fat diet-induced obese mice. Nutrition Research and Practice, 13(6), 507–514. https://doi.org/10.4162/nrp.2019.13.6.507
Kim, H. J., Kim, Y. J., & Kim, H. J. (2020). Antidiabetic and antiobesity effects of anthocyanin-rich purple sweet potato (Ipomoea batatas) extracts in high-fat diet-induced obese mice. Nutrition Research and Practice, 14(6), 507–516. https://doi.org/10.4162/nrp.2020.14.6.507
Koleva, I. I., van Beek, T. A., Linssen, J. P., de Groot, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical Analysis, 13(1), 8–17. https://doi.org/10.1002/pca.611
Li, M.M., Chen, Y.T., Ruan, J.C., Wang, W.J., Chen, J.G., & Zhang, Q.F. (2023). Structure-activity relationship of dietary flavonoids on pancreatic lipase. Current Research in Food Science, 6, 100424. https://doi.org/10.1016/j.crfs.2022.100424
Liu, T., Xie, Q., Zhang, M., Gu, J., Huang, D., & Cao, Q. (2024). Reclaiming Agriceuticals from Sweetpotato (Ipomoea batatas [L.] Lam.) By-Products. Foods, 13(8), 1180. https://doi.org/10.3390/foods13081180
Liu, T.T., Liu, X.T., Chen, Q.X., & Shi, Y. (2020). Lipase inhibitors for obesity: A review. Biomedicine & Pharmacotherapy, 128, 110314. https://doi.org/10.1016/j.biopha.2020.110314
Luo, S., Gill, H., Dias, D.A., Li, M., Hung, A., Nguyen, L.T., & Lenon, G.B. (2019). The inhibitory effects of an eight-herb formula (RCM-107) on pancreatic lipase: enzymatic, HPTLC profiling and in silico approaches. Heliyon, 5(9). DOI: 10.1016/j.heliyon.2019.e02453
Magalhães, B. R. R., Lopes, C. P., Silva, L. C., Nascimento, T. G., & Silva, M. S. (2015). Phenolic composition and antioxidant activity of leaves, stems and roots of medicinal plants from Brazil. Industrial Crops and Products, 77, 281–287. https://doi.org/10.1016/j.indcrop.2015.08.048
Magaña-Rodríguez, O.R., Ortega Pérez, L.G., Ayala-Ruiz, L.A., Piñon-Simental, J.S., Gallegos-Torres, O.F., & Rios Chavez, P. (2023). Inhibitory effects of edible and medicinal plant extracts on the enzymatic activity of pancreatic lipase. Journal of the Mexican Chemical Society, 67(3), 172-181. https://doi.org/10.29356/jmcs.v67i3.2004
McDougall, G.J., Kulkarni, N.N., & Stewart, D. (2008). Current developments on the inhibitory effects of berry polyphenols on digestive enzymes. Biofactors, 34(1), 73-80. https://doi.org/10.1002/biof.5520340108
Modanwal, S., Maurya, A.K., Mulpuru, V., & Mishra, N. (2025). Exploring flavonoid derivatives as potential pancreatic lipase inhibitors for obesity management: An in silico and in vitro study. Molecular Diversity, 29(3), 2499-2516. https://doi.org/10.1007/s11030-024-11005-5
Nikolaos, N., Wang, L.F., Tsimidou, M., & Zhang, H.Y. (2004). Estimation of scavenging sctivity of phenolic compounds using the ABTS•+ assay. Journal of Agricultural and Food Chemistry, 52(15), 4669-4674. https://doi.org/10.1021/jf0400056
Nguyen, T. T., & Lee, Y. H. (2021). Anti-obesity effects of polyphenol-rich plant extracts via inhibition of digestive enzymes and modulation of gut microbiota. Journal of Functional Foods, 77, 104326. https://doi.org/10.1016/j.jff.2020.104326
Nguyễn Kim Phi Phụng. (2007). Phương pháp cô lập hợp chất hữu cơ (Xuất bản lần thứ 1). Nhà xuất bản Đại học Quốc gia TP. Hồ Chí Minh. 528.
Olivas-Aguirre, F., Quintero-Vargas, J., Escobar-Puentes, A., & Wall-Medrano, A. (2024). Bioactive compounds and biological activities of sweet potato (Ipomoea batatas (L.) Lam.). In Bioactive Compounds in the Storage Organs of Plants. Cham: Springer Nature Switzerland, 877-900. https://doi.org/10.1007/978-3-031-44746-4_43
Oyaizu, M. (1986). Studies on products of browning reaction—Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44(6), 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307
Padma, R., Parvathy N.G., Renjith V., & Kalpana P.R. (2013). Quantitative estimation of tannins, phenols and antioxidant activity of methanolic extract of Imperata cylindrical. International Journal of Research in Pharmaceutical Sciences, 4(1), 73-77. file:///C:/Users/Admin/Downloads/tanninestimation.pdf
Padwal, R., & Majumdar, S. R. (2007). Drug treatments for obesity: Orlistat, sibutramine, and rimonabant. The Lancet, 369(9555), 71–77. https://doi.org/10.1016/S0140-6736(07)60033-6
Patil, S., Patil, M., Maheshwari, V.L., & Patil, R.H. (2022). Pancreatic lipase (PL) inhibitors from medicinal plants and their potential applications in the Management of Obesity. In Natural Products as Enzyme Inhibitors: An Industrial Perspective. Singapore: Springer Nature Singapore. 153-167. https://doi.org/10.1007/978-981-19-0932-0_7
Phạm Hoàng Hộ. (2003). Cây cỏ Việt Nam (Quyển II), Nxb Trẻ Thành phố Hồ Chí Minh.
Rajan, L., Palaniswamy, D., & Mohankumar, S.K. (2020). Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacological research, 155, 104681. https://doi.org/10.1016/j.phrs.2020.104681
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Roy, D., Kaur, P., Ghosh, M., Choudhary, D., & Rangra, N.K. (2024). The therapeutic potential of typical plant‐derived compounds for the management of metabolic disorders. Phytotherapy Research, 38(8), 3986-4008. https://doi.org/10.1002/ptr.8238
Senguttuvan, J., Paulsamy, S., & Karthika, K. (2014). Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pacific Journal of Tropical Biomedicine, 4(Suppl 1), 359–367. https://doi.org/10.12980/APJTB.4.2014C1030
Seyedan, A., Alshawsh, M.A., Alshagga, M.A., Koosha, S., & Mohamed, Z. (2015). Medicinal plants and their inhibitory activities against pancreatic lipase: a review. Evidence‐Based Complementary and Alternative Medicine, 2015(1), 973143. https://doi.org/10.1155/2015/973143
Shaik Mohamed Sayed, U.F., Moshawih, S., Goh, H.P., Kifli, N., Gupta, G., Singh, S.K., Chellappan, D.K., Dua, K., Hermansyah, A., Ser, H.L., & Ming, L.C. (2023). Natural products as novel anti-obesity agents: insights into mechanisms of action and potential for therapeutic management. Frontiers in pharmacology, 14, 1182937. https://doi.org/10.3389/fphar.2023.1182937
Sharma, O.P., & Bhat T.K. (2009). DPPH antioxidant assay revisited. Food chemistry, 113(4), 1202-1205. https://doi.org/10.1016/j.foodchem.2008.08.008
Singleton, V. L., Orthofer R., & Lamuela-Raventos R. M. (1999). Analysis of total phenol and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299C(1), 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Sultana, T., Islam, S., Azad, M.A.K., Akanda, M.J.H., Rahman, A., & Rahman, M.S. (2024). Phytochemical Profiling and Antimicrobial Properties of Various Sweet Potato (Ipomoea batatas L.) Leaves Assessed by RP-HPLC-DAD. Foods, 13(17), 2787. https://doi.org/10.3390/foods13172787
Sun, H., Mu, T., Xi, L., Zhang, M., & Chen, J. (2019). Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods: A review. Critical Reviews in Food Science and Nutrition, 59(1), 32–39. https://doi.org/10.1080/10408398.2017.1355776
Tak, Y.J., & Lee, S.Y. (2020). Anti-obesity drugs: long-term efficacy and safety: an updated review. The world journal of men's health, 39(2), 208. PMID: 32202085
Thanh, D. T., Oanh, V. K., Nguyen, H. C., Ngan, L. T. M., & Hieu, T. T. (2024). Phytochemical composition, antioxidant, antibacterial, and enzyme inhibitory activities of organic extracts from flower buds of Cleistocalyx operculatus (Roxb.) Merr. et Perry. BioTechnologia, 105(2), 137–147. https://doi.org/10.5114/bta.2024.139753
Truong, V. D., McFeeters, R. F., Thompson, R. T., Dean, L. L., & Shofran, B. (2007). Phenolic acid content and composition in leaves of sweet potato genotypes and their correlation with antioxidant activities. Food Chemistry, 103(3), 829–838. https://doi.org/10.1016/j.foodchem.2006.09.004
Wong, S. P., Leong, L. P., & Koh, J. H. W. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99(4), 775–783. https://doi.org/10.1016/j.foodchem.2005.07.058
Wu, T., Yang, L., Guo, X., & Zhang, M. (2022). Flavonoids from sweet potato (Ipomoea batatas L.) leaves inhibit lipid accumulation and oxidative stress in 3T3-L1 adipocytes. Journal of Functional Foods, 90, 104984. https://doi.org/10.1016/j.jff.2022.104984
Zhao, C., Yang, C., Chen, C., & Zhang, M. (2018). Inhibitory effects of flavonoids from traditional Chinese medicine on digestive enzymes related to obesity. Phytotherapy Research, 32(5), 689–696. https://doi.org/10.1002/ptr.6010