Removing Rhodamine B from aqueous solutions by Zn/Fe-doped MIL-53(Al)

Dinh Du Pham1,
1 Institute of Applied Technology, Thu Dau Mot University, Vietnam

Main Article Content

Abstract

In this paper, Zn/Fe-doped MIL-53(Al) and MIL-53(Al) were synthesized by solvothermal method in N’N-dimethylformamide. The material was characterized using XRD, FT-IR, TG, EDX, SEM, and nitrogen adsorption/desorption isotherms. This material’s catalytic adsorption was evaluated via its removal efficiency of rhodamine B (RB) from aqueous solution. The results show that doping with Zn is not favorable for the MIL-53 structure formed, while the material structure is almost unaffected when doping with Fe. But, MIL-53(Al, Fe) has higher adsorption capacity and catalytic activity than the other material samples. It shows that RB was completely removed after 240 minutes of the reaction on MIL-53(Al, Fe) catalyst at 60 °C (10 mg/L RB, 1.0 g/L of the catalyst, 0.192 M H2O2, pH 7). The decomposition reaction of RB by H2O2 on MIL-53(Al, Fe) occurs in a heterogeneous Fenton-like process.

Article Details

References

Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121-135. https://doi.org/10.1016/j.jhazmat.2014.04.054.
Chen, L., Mowat, J. P. S., Jimenez, D. F., Morrison, C. A., Thompson, S. P., Wright, P. A., & Düren, T. (2013). Elucidating the Breathing of the Metal-Organic Framework MIL-53(Sc) with ab Initio Molecular Dynamics Simulations and in Situ X-ray Powder Diffraction Experiments. J. Am. Chem. Soc., 135, 15763–15773. https://doi.org/10.1021/ja403453g.
Chen, X., Xue, Z., Yao, Y., Wang, W., Zhu, F., & Hong, C. (2012). Oxidation Degradation of Rhodamine B in Aqueous by UV/S2O82− Treatment System. Hindawi International Journal of Photoenergy, Article ID 754691. https://doi.org/10.1155/2012/754691.
Devic, T., Horcajada, P., Serre, C., Salles, F., Maurin, G., Moulin, B., Heurtaux, D., Clet, G., Vimont, A., Grenèche, J-M., Ouay, B. L., Moreau, F., Magnier, E., Filinchuk, Y., Marrot, J., Lavalley, J-C., Daturi, M., & Férey, G. (2010). Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the HostGuest Interactions. J. Am. Chem. Soc., 132, 1127-1136. https://doi.org/10.1021/ja9092715.
Du, J. J., Yuan, Y. P., Sun, J. X., Peng, F. M., Jiang, X., Qiu, L. G., Xie, A. J., Shen, Y. H., & Zhu, J. F. (2011). New photocatalysts based on MIL-53 metal-organic frameworks for the decolorization of methylene blue dye. Journal of Hazardous Materials, 190, 945-951. https://doi.org/10.1016/j.jhazmat.2011.04.029.
Du, P. D., & Hoai, P. N. (2021). Synthesis of MIL-53(Fe) Metal-Organic Framework Material and Its Application as a Catalyst for Fenton-Type Oxidation of Organic Pollutants. Hindawi Advances in Materials Science and Engineering, Article ID 5540344. https://doi.org/10.1155/2021/5540344.
Férey, G., Latroche, M., Serre, C., Millange, F., Loiseaua, T., & Percheron-Guégan, A. (2003). Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun., 37, 2976-2977. https://doi.org/10.1039/B308903G.
Gordon, J., Kazemian, H., & Rohani, S. (2012). Rapid and efficient crystallization of MIL-53(Fe) by ultrasound and microwave irradiation. Micropor. Mesopor. Mat., 162, 36-43. https://doi.org/10.1016/j.micromeso.2012.06.009.
Huang, D., Liu, Y., Liu, Y., Di, D., Wang, H., & Yang, W. (2019). Preparation of metal-organic frameworks with bimetallic linkers and corresponding properties. New J. Chem., 43, 7243-7250. https://doi.org/10.1039/C9NJ00433E.
Isaeva, V. I., Vedenyapina, M. D., Kulaishin, S. A., Lobova, A. A., Chernyshev, V. V., Kapustin, G. I., Tkachenko, O. P., Vergun, V. V., Arkhipov, D. A., Nissenbaum, V. D., & Kustuv, L. M. (2019). Adsorption of 2,4-dichlorophenoxyacetic acid in an aqueous medium on nanoscale MIL-53(Al) type materials. Dalton Trans., 48, 15091-15104. https://doi.org/10.1039/C9DT03037A.
Liu, J. F., Mu, J. C., Qin, R. X., & Ji, S. F. (2019). Pd nanoparticles immobilized on MIL-53(Al) as highly effective bifunctional catalysts for oxidation of liquid methanol to methyl formate. Petroleum Science, 16, 901-911. https://doi.org/10.1007/s12182-019-0334-6.
Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., & Férey, G. (2004). A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J., 10, 1373-1382. https://doi.org/10.1002/chem.200305413.
Malsche, W. D., Perrer, S. V. D., Silverans, S., Maes, M., Vos, D. E. D., Lynen, F., & Denayer, J. F. M. (2012). Unusual pressure-temperature dependency in the capillary liquid chromatographic separation of C8 alkylaromatics on the MIL-53(Al) metal-organic framework. Micropor. Mesopor. Mat., 162, 1-5. https://doi.org/10.1016/j.micromeso.2012.06.002.
Naeimi, S., & Faghihian, H. (2017). Application of novel metal organic framework, MIL-53(Fe) and its magnetic hybrid; for removal of pharmaceutical pollutant, doxycycline from aqueous solutions. Environmental Toxicology and Pharmacology, 53, 121-132. https://doi.org/10.1016/j.etap.2017.05.007.
Patil, D. V., Rallapalli, P. B. S., Dangi, G. P., Tayade, R. J., Somani, R. S., & Bajaj, H. C. (2011). MIL-53(Al): An Efficient Adsorbent for the Removal of Nitrobenzene from Aqueous Solutions. Ind. Eng. Chem. Res., 50, 10516-10524. https://doi.org/10.1021/ie200429f.
Rahmani, E., & Rahmani, M. (2018). Al-based MIL-53 Metal Organic Framework (MOF) as the New Catalyst for Friedel-Crafts Alkylation of Benzene. Ind. Eng. Chem. Res., 57, 1, 169-178. https://doi.org/10.1021/acs.iecr.7b04206.