Preparing and evaluating rhodamine B removal ability in aqueous solutions of copper oxide nanoparticles

Pham Dinh Du1,
1 Thu Dau Mot University, 6 Tran Van On St., Thu Dau Mot city, Binh Duong, 75000, Vietnam

Nội dung chính của bài viết

Tóm tắt

In this paper, nanostructured copper oxide materials were prepared in N’N-dimethylformamide solvent from Cu(NO3)2×3H2O and benzene-1,4-dicarboxylic acid precursors. The obtained copper oxide nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG/dTG), nitrogen adsorption-desorption isotherms, scanning and transmission electron microscopy (SEM and TEM). At 120°C synthesis, the CuO crystalline phase was mainly formed, while at 180-220°C, the Cu2O and Cu crystalline phases were also formed in addition to the CuO crystalline phase. The adsorption or degradation ability based on H2O2/catalyst system of copper oxide nanoparticles for rhodamine B removal was also evaluated. The results showed that copper oxide nanoparticles had low adsorption capacity for rhodamine B, but high catalytic activity to decompose rhodamine B in aqueous solution with hydrogen peroxide as the oxidizing agent.

Chi tiết bài viết

Tài liệu tham khảo

Barros, T. R. B., Barbosa, T. S. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2023). Adsorption of Rhodamine-B (RhB) and Regeneration of MCM-41 Mesoporous Silica. Catalysis Research, 3(1). https://doi.org/10.21926/cr.2301010
Bonthula, S., Bonthula, S. R., Pothu, R., Srivastava, R. K., Boddula, R., Radwan, A. B., & Al-Qahtani, N. (2023). Recent Advances in Copper-Based Materials for Sustainable Environmental Applications. Sustain. Chem., 4, 246–271. https://doi.org/10.3390/suschem4030019
Crini, G. (2006). Non-convention allow-cost adsorbents for dye removal: a review. Bioresour. Technol., 97, 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001
Espinosa-Lagunes, F. I., Cruz, J. C., Vega-Azamar, R. E., Murillo Borbonio, I., Torres González, J., Escalona Villalpando, R. A., Gurrola, M. P., Ledesma García, J., & Arriaga, L. G. (2022). Copper nanoparticles suitable for bifunctional cholesterol oxidation reaction: harvesting energy and sensor. Mater. Renew. Sustain Energy, 11, 105–114. https://doi.org/10.1007/s40243-022-00210-7
Fakhree, F. M., Waheed, I. F., & Mahmoud, K. M. (2021). Synthesis and Characterization of CuO Nanoparticles Stabilized by Quercetin and Its Application for Anti-Breast Cancer Activity. Egyptian Journal of Chemistry, 64(6), 2989–2995. https://doi.org/10.21608/ejchem.2021.56260.3207
Jadhav, M. (2021). CuO Nanoparticles Synthesis by Sol- gel Method and Characterization. Nano Sci. & Nano Technol., 15(2), 106.
Nikravesh, N. Y., Beygzadeh, M., & Adl, M. (2023). Microporous MOF-5@AC and Cu-BDC@AC Composite Materials for Methane Storage in ANG Technology. Hindawi-International Journal of Energy Research. https://doi.org/10.1155/2023/2282746
Park, C., Lee, M., Lee, B., Kim, S. W., Chase, H. A., Lee, J., & Kim, S. (2007). Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem. Eng. J., 36, 59–65. https://doi.org/10.1016/j.bej.2006.06.007
Rotti, R. B., Ramya, M., Babu, K. R. V., & Sunitha, D. V. (2022). Effect of plant extracts on structural & morphological features of CuO nano structured material. IOP Conf. Ser.: Mater. Sci. Eng., 1221(012055). https://doi.org/10.1088/1757-899X/1221/1/012055
Topnani, N., Kushwaha, S., & Athar, T. (2009). Wet Synthesis of Copper Oxide Nanopowder. International Journal of Green Nanotechnology: Materials Science & Engineering, 1(2), M67–M73. https://doi.org/10.1080/19430840903430220