Preparing and evaluating rhodamine B removal ability in aqueous solutions of copper oxide nanoparticles

Dinh Du Pham1,
1 Thu Dau Mot University, 6 Tran Van On St., Thu Dau Mot city, Binh Duong, 75000, Vietnam

Main Article Content

Abstract

In this paper, nanostructured copper oxide materials were prepared in N’N-dimethylformamide solvent from Cu(NO3)2×3H2O and benzene-1,4-dicarboxylic acid precursors. The obtained copper oxide nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG/dTG), nitrogen adsorption-desorption isotherms, scanning and transmission electron microscopy (SEM and TEM). At 120°C synthesis, the CuO crystalline phase was mainly formed, while at 180-220°C, the Cu2O and Cu crystalline phases were also formed in addition to the CuO crystalline phase. The adsorption or degradation ability based on H2O2/catalyst system of copper oxide nanoparticles for rhodamine B removal was also evaluated. The results showed that copper oxide nanoparticles had low adsorption capacity for rhodamine B, but high catalytic activity to decompose rhodamine B in aqueous solution with hydrogen peroxide as the oxidizing agent.

Article Details

References

Barros, T. R. B., Barbosa, T. S. B., Barbosa, T. L. A., & Rodrigues, M. G. F. (2023). Adsorption of Rhodamine-B (RhB) and Regeneration of MCM-41 Mesoporous Silica. Catalysis Research, 3(1). https://doi.org/10.21926/cr.2301010
Bonthula, S., Bonthula, S. R., Pothu, R., Srivastava, R. K., Boddula, R., Radwan, A. B., & Al-Qahtani, N. (2023). Recent Advances in Copper-Based Materials for Sustainable Environmental Applications. Sustain. Chem., 4, 246–271. https://doi.org/10.3390/suschem4030019
Crini, G. (2006). Non-convention allow-cost adsorbents for dye removal: a review. Bioresour. Technol., 97, 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001
Espinosa-Lagunes, F. I., Cruz, J. C., Vega-Azamar, R. E., Murillo Borbonio, I., Torres González, J., Escalona Villalpando, R. A., Gurrola, M. P., Ledesma García, J., & Arriaga, L. G. (2022). Copper nanoparticles suitable for bifunctional cholesterol oxidation reaction: harvesting energy and sensor. Mater. Renew. Sustain Energy, 11, 105–114. https://doi.org/10.1007/s40243-022-00210-7
Fakhree, F. M., Waheed, I. F., & Mahmoud, K. M. (2021). Synthesis and Characterization of CuO Nanoparticles Stabilized by Quercetin and Its Application for Anti-Breast Cancer Activity. Egyptian Journal of Chemistry, 64(6), 2989–2995. https://doi.org/10.21608/ejchem.2021.56260.3207
Jadhav, M. (2021). CuO Nanoparticles Synthesis by Sol- gel Method and Characterization. Nano Sci. & Nano Technol., 15(2), 106.
Nikravesh, N. Y., Beygzadeh, M., & Adl, M. (2023). Microporous MOF-5@AC and Cu-BDC@AC Composite Materials for Methane Storage in ANG Technology. Hindawi-International Journal of Energy Research. https://doi.org/10.1155/2023/2282746
Park, C., Lee, M., Lee, B., Kim, S. W., Chase, H. A., Lee, J., & Kim, S. (2007). Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem. Eng. J., 36, 59–65. https://doi.org/10.1016/j.bej.2006.06.007
Rotti, R. B., Ramya, M., Babu, K. R. V., & Sunitha, D. V. (2022). Effect of plant extracts on structural & morphological features of CuO nano structured material. IOP Conf. Ser.: Mater. Sci. Eng., 1221(012055). https://doi.org/10.1088/1757-899X/1221/1/012055
Topnani, N., Kushwaha, S., & Athar, T. (2009). Wet Synthesis of Copper Oxide Nanopowder. International Journal of Green Nanotechnology: Materials Science & Engineering, 1(2), M67–M73. https://doi.org/10.1080/19430840903430220