Calculation of stability constants of new metal-thiosemicarbazone complexes based on the QSPR modeling using MLR and ANN methods

Minh Quang Nguyen1,, Nguyen Minh An Tran1, Van Tat Pham2, Thi Phuong Thuy Bui3, Thanh Duoc Nguyen4
1 Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Vietnam
2 Institute of Development and Applied Economics, Hoa Sen University, Vietnam
3 Faculty of Basic Sciences, Van Lang University, Vietnam
4 Faculty of Pharmacy, Hong Bang International University, Vietnam

Main Article Content

Abstract

In this study, the stability constants (logβ11) of twenty-eight new complexes between several ion metals and thiosemicarbazone ligands were predicted on the basis of the quantitative structure property relationship (QSPR) modeling. The stability constants were calculated from the results of the QSPR models. The QSPR models were built by using the multivariate least regression (QSPRMLR) and artificial neural network (QSPRANN). The molecular descriptors, physicochemical and quantum descriptors of complexes were generated from molecular geometric structure and semi-empirical quantum calculation PM7 and PM7/sparkle. The best linear model QSPRMLR involves five descriptors, namely Total energy, xch6, xp10, SdsN, and Maxneg. The quality of the QSPRMLR model was validated by the statistical values that were R2train = 0.860, Q2LOO = 0.799, SE = 1.242, Fstat = 54.14 and PRESS = 97.46. The neural network model QSPRANN with architecture I(5)-HL(9)-O(1) was presented with the statistical values: R2train = 0.8322, Q2CV = 0.9935 and Q2test = 0.9105. Also, the QSPR models were evaluated externally and achieved good performance results with those from the experimental literature. In addition, the results from the QSPR models could be used to predict the stability constants of other new metal-thiosemicarbazones.

Article Details

References

Admasu, D., Reddy, D. N., & Mekonnen, K. N. (2016). Spectrophotometric determination of Cu(II) in soil and vegetable samples collected from Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone. SpringerPlus, 5(1169), 1-8.
Al-Busaidi, I. J., Haque, A., Al Rasbi, N. K., & Khan, M. S. (2019). Phenothiazine-based derivatives for optoelectronic applications: A review. Synthetic Metals, 257, 116189. doi:10.1016/j.synthmet.2019.116189.
Artelnics. (2020). Neural Designer software. USA: Artificial Intelligence Techniques, Ltd.
Atalay, T., & Ozkan, E. (1994). Thermodynamic studies of some complexes of 4’- morpholinoacetophenone thiosemicarbazone. Thermochimica Acta., 237, 369-374.
Billo, E. J. (2007). Excel For Scientists and Engineers: Numerical Methods. USA: John Wiley and Sons, Inc.
Biswas, R., Brahman, D., & Sinha. B. (2014). Thermodynamics of the complexation between salicylaldehyde thiosemicarbazone with Cu(II) ions in methanol–1,4-dioxane binary solutions. J. Serb. Chem. Soc., 79(5), 565-578.
Casas, J. S. García-Tasende, M. S., & Sordo, J. (2000). Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review. Coordination Chemistry Reviews, 209(1), 197-261.
Eg˘lencea, S., Sahin, M. Özyürek, M. Apak, R., & Ülküseven, B. (2018). Dioxomolybdenum (VI) complexes of S- methyl-5-bromosalicylidene-Nalkyl substituted thiosemicarbazones: Synthesis, catalase inhibition and antioxidant activities. Inor. Chimi. Acta, 469, 495-502.
Ezhilarasi. (2012). Synthesis Characterization and Application of Salicylaldehyde Thiosemicarbazone and Its Metal Complexes. Int. J. Res. Chem. Environ, 2(4), 130-148.
Gaál, A., Orgován, G., Polgári, Z., Réti, A., Mihucz V. G. Bősze, S., Szoboszlai, N., & Streli, C. (2014). Complex forming competition and in-vitro toxicity studies on the applicability of di-2-pyridylketone-4,4,- dimethyl-3-thiosemicarbazone (Dp44mT) as a metal chelator. J. Inorg. Biochem., 130, 52-58.
Garg, B. S., & Jain, V. K. (1989). Determination of thermodynamic parameters and stability constants of complexes of biologically active o- vanillinthiosemicarbazone with bivalent metal ions. Thermochimica Acta., 146, 375-379.
Garg, B. S., Ghosh, S., Jain, V. K., & Singh, P. K. (1990). Evaluation of thermodynamic parameters of bivalent metal complexes of 2-hydroxyacetophenonethiosemicarbazone (2-HATS). Thermochimica Acta, 157, 365-368.
Gasteiger, J., & Zupan, J. (1993). Neural Networks in Chemistry. Chiw. Inr. Ed. EngI., 32, 503-521.
Harvey, D. (2000). Modern analytical Chemistry. Toronto: Mc.Graw Hill.
Huang, L., Feng, Z. L., Wang, Y. T., & Lin, L. G. (2017). Anticancer carbazole Alkaloids and coumarins from Clausena plants: A review. Chinese Journal of Natural Medicines, 15(12), 881-888.
Jekyll., & Minimal, M. (2017). Avogadro 1.2.0. Avogadro Chemistry, USA.
Jiménez, M. A., Luque De Castro, M. D., & Valcárcel, M. (1980). Potentiometric Study of Silver (I)-Thiosemicarbazonates. Microchemical Journal, 25, 301-308.
Koduru, J. R., & Lee, K. D. (2014). Evaluation of thiosemicarbazone derivative as chelating agent for the simultaneous removal and trace determination of Cd(II) and Pb(II) in food and water samples. Food Chemistry, 150, 1-8.
Krishna, D. G., & Devi, C. K. (2015). Determination of cadmium (II) in presence of micellar medium using cinnamaldehyde thiosemicarbazone by spectrophotometry. Int. J. Green Chem. Biopro., 5(2), 28-30.
Krishna, D. G., & Mohan, G. V. K. (2013). A Facile Synthesis, Characterization of Cinnamaldehyde Thiosemicarbazone and Determination of Molybdenum (VI) by Spectrophotometry in Presence of Micellar Medium. Indian J. Appl. Res., 3(8), 7-8.
Krucaite, G., & Grigalevicius, S. (2019). A review on low-molar-mass carbazole- based derivatives for organic light emitting diodes. Synthetic Metals, 247, 90-108.
Kunal, R., Supratik, K., & Rudra, N. D. (2015). A Primer on QSAR/QSPR Modeling, Fundamental Concepts. New York: Springer.
Matlab R2016a 9.0.0.341360. (2016). USA: MathWorks.
Milunovic, M., Enyedy, E. A., Nagy, N. V., Kiss, T., Trondl, R., Jakupec, M. A., Keppler, B. K., Krachler, R., Novitchi, G., & Arion, V. B. (2012). L- and D-Proline Thiosemicarbazone Conjugates: Coordination Behavior in Solution and the Effect of Copper(II) Coordination on Their Antiproliferative Activity. Inorg. Chem., 51, 9309-9321.
Nagajothi, A., Kiruthika, A., Chitra, S., & Parameswari, K. (2013). Fe(III) Complexes with Schiff base Ligands: Synthesis, Characterization, Antimicrobial Studies. Res. J. chem. Sci., 3(2), 35-43.
OECD. (2007). Guidance Document on the Validation of (Quantitative) Structure– Activity Relationships Models, France: Organisation for Economic Cooperation and Development.
Pham, V. T. (2009). Development of QSAR and QSPR. Ha Noi: Publisher of Natural Sciences and Technique.
Pyrzynska, K. (2007). Determination of molybdenum in environmental samples. Anal. Chim. Acta, 590, 40-48.
QSARIS 1.1. (2001). USA: Statistical Solutions Ltd.
Reddy, K. H., & Prasad, N. B. L. (2004). Spectrophotometric determination of copper (II) in edible oils and seed using novel oxime-thiosemicarbazones. India J. Chem., 43A, 111-114.
Reddy, K. V., Babu, S. V., & Reddy, K. H. (2011). Spectrophotometric Determination of Copper(II) in Biological Samples by Using 2-Acetylfuran Thiosemicarbazone as Chelating Reagent. Asia. J. Chem., 23(10), 4425-4429.
Reddy, N. S. R., & Reddy, D. V. (1983). Spectrophotometric determination of vanadium (V) with salicylaldehyde thiosemicarbazone. J. Indian. Inst. Sci., 64(B), 133-136.
Rogolino, D., Cavazzoni, A., Gatti, A., Tegoni, M., Pelosi, G., Verdolino, V., Fumarola, C., Cretella, D., Petronini, P.G., & Carcelli, M. (2017). Anti-proliferative effects of copper (II) complexes with Hydroxyquinoline-Thiosemicarbazone ligands. Eu. J. Med. Chem., 128, 140-153.
Rojas, R. (1996). Neural Networks. Berlin: Springer-Verlag.
Sahadev, M., Sharma, R. K., & Sindhwani, S. K. (1992). Thermal studies on the chelation behaviour of biologically active 2-hydroxy- 1-naphthaldehyde thiosemicarbazone (HNATS) towards bivalent metal ions: a potentiometric study. Thermochimica Acta, 202, 291-299.
Sarkar K., & Garg, B. S. (1987). Determination of thermodynamic parameters and stability constants of the complexes of p-MITSC with transition metal ions. Thermochimica Acta, 113, 7-14.
Sawhney, S. S., & Chandel, S. K. (1983). Solution chemistry of Cu(II)-, Co(II)-, Ni(II)-, Mn(II)- and Zn(II)-p-aminobenzaldehyde thiosemicarbazone systems. Thermochimica Acta, 71, 209-214.
Sawhney, S. S., & Chandel, S. K. (1984). Stability and thermodynamics of La(III)-, Pr(III)-, Nd(III)- Gd(III)- and Eu(III)-p- nitrobenzaldehyde thiosemicarbazone systems. Thermochimica Acta, 72, 381-385.
Sawhney, S. S., & Sati, R. M. (1983). pH- metric studies on Cd(II)-, Pb(II)-, AI(III)-, Cr(III)- and Fe(III)-p-nitrobenzaldehyde thiosemicarbazone systems. Thermochimica Acta, 66, 351-355.
Steppan, D. D., Werner, J., & Yeater, P. R. (1998). Essential Regression and Experimental Design for Chemists and Engineers, Free Software Package. http://home.t- online.de/home/jowerner98/indexeng.html.
Stewart, J. J. P. (2002). MOPAC2016, Version: 17.240W. Stewart Computational Chemistry, USA.
Sudeshna, G. & Parimal, K. (2010). Multiple non-psychiatric effects of phenothiazines: A review. European Journal of Pharmacology, 648(1-3), 6-14.
Toribio, F., Fernandez, J. M. L., Bendito, D. P., & Valcárcel, M. (1980). 2 2’- dihydroxybenzophenone thiosemicarbazone as a spectrophotometric Reagent for the determination of copper, cobalt, nickel, and iron trace amounts in mixtures without previous separations. Microchemical Journal, 25, 338-347.
Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., & Alkon, D. L. (1988). Accelerating the convergence of the backpropagation method. Biological Cybernetics, 59, 257-263.
XLSTAT Version 2016.02.28451 (2016). USA: Addinsoft.
Yee, L. C., & Wei, Y. C. (2012). Statistical Modelling of Molecular Descriptors in QSAR/QSPR, chapter 1: Current Modeling Methods Used in QSAR/QSPR. German: Wiley-VCH Verlag GmbH & Co. KgaA.