Properties of scalarizing functions of set optimization problems with variable cones and applications

Vinh Hien Dinh1, , Dinh Inh Nguyen1
1 Faculty of Applied Sciences, Ho Chi Minh City University of Food Industry, Vietnam

Main Article Content

Abstract

In this paper, we study properties and applications of nonlinear scalarizing functions of set optimization problems with variable cones. First, we extend the nonlinear scalarizing functions in the case of variable cones based on set less order relations. Next, we investigate some basic properties o f such scalarizing functions. Finally, we apply the above properties to establish the optimal conditions for set optimization problems with variable cones. Our results are new or improve the existing ones in the literature.

Article Details

References

Chen, G. Y., Huang, X., & Yang, X. (2005). Vector Optimization: Set-Valued and Variational Analysis, Vol. 541. Berlin: Springer-Verlag.
Gerstewitz, C. (1983). Nichtkonvexe dualităt in der vektoroptimierung. Wissenschaftliche Zeitschrift Der Technischen Hochschule Leuna-Merseburg, 25(3), 357-364.
Gerth, C., & Weidner, P. (1990). Nonconvex separation theorems and some applications in vector optimization. Journal of Optimization Theory and Applications, 67(2), 297-320.
Gopfert, A., Riahi, H., Tammer, C., & Zalinescu, C. (2006). Variational methods in partially ordered spaces. New York: springer Science & Business Media.
Gutierrez, C., Jimenez, B., & Novo, V. (2015). Nonlinear scalarizations of set optimization problems with set orderings. In: Hamel, A., Heyde, F., Lõhne, A., Rudloff, B., & Schrage, C. Set Optimization and Applications-The State of the Art, (43-63). Berlin: Springer.
Gutierrez, C., Miglierina, E., Moỉho, E., & Novo, V. (2012). Pointwise well-posedness in set optimization with cone proper sets. Nonlinear Analysis: Theory’, Methods and Applications, 75(4), 1822-1833.
Hamel, A., & Lõhne, A. (2002). Minimal set theorems (11). Halle (Saale): Martin-Luther- Universitãt Halle-Wittenberg, Institut fur Mathcmatik.
Hamel, A., & Lõhne, A. (2006). Minimal element theorems and ekeland’s principle with set relations. Journal o f Nonlinear and Convex Analysis, 7(1), 19-37.
Hernandez, E., Rodriguez-Marin, L., & Sama, M. (2010). On solutions of set-valued optimization problems. Computers & Mathematics with Applications, 60(5), 1401-1408.
Jahn, J. (2011). Vector Optimization: Theory, Applications, and Extensions. Berlin: Springer.
Jahn, J., & Ha, T. X. D. (2011). New order relations in set optimization. Journal of Optimization Theory and Applications, 148(2), 209-236.
Kobis, E., & Tammer, C. (2017). Robust vector optimization with a variable domination structure. Carpathian Journal o f Mathematics, 33(3), 343-351.
Kuroiwa, D. (1998). The natural criteria in set­ valued optimization. Kyoto University, (1031), 85-90.
Lam, Q. A. Tran, Q. D., & Dinh, V. H. (2019). Stability for parametric vector quasiequilibrium problems with variable cones. Numerical Functional Analysis and Optimization, 40(A), 461-483.
Lam, Q. A., Tran, Q. D., Dinh, V. H., Kuroiwa, D., & Petrot, N. (2020a). Convergence of solutions to set optimization problems with the set less order relation. Journal of Optimization Theory and Applications, 185(2), 416-432.
Lam, Q. A., Tran, Q. D., & Dinh, V. H. (2020b). Stability of effeient solutions to set optimization problems. Journal o f Global Optimization, 78(3), 563-580.
Luc, D. T. (1989). Theory’ of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, Vol. 319. Berlin: Springer.
Nishnianidze, Z. (1984). Fixed points of monotonic multiple-valued operators. Bulletin of the Georgian National Academy of Sciences, 114, 489-491.
Young, R. C. (1931). The algebra of many-valued quantities. Mathematische Annalen, 104(i), 260-290.