Central limit theorem in the double profit model
Main Article Content
Abstract
The article aims to develop a double profit model for financial markets (including the stock market, derivatives, bonds, etc.) represented by a random walk in one-dimensional space. It seeks to determine the probability law of this model using the moment method, as previously reported by Depauw and Derrien (2009) and Lam (2014). Specifically, the article proves that the examined model converges to a normal distribution. This study can be considered a significant improvement over the models analyzed in Lam Hoang Chuong and Duong Thi Be Ba (Lam & Duong, 2017), and Lam Hoang Chuong et al. (Lam et al., 2021).
Keywords
Jacob-Bernoulli’s formula, Markov operator, normal distribution, Random walk.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Billingsley, P. (1995). Probability and Measure, Third Edition. John Wiley, New York.
Brown, B. M. (1971). Martingale central limit theorems. Ann. Math. Statist., 42, 59 - 66. https://doi.org/10.1214/aoms/1177693494
Depauw, J., & Derrien, J. M. (2009). Variance limite d'une marche aléatoire réversible en milieu aléatoire sur Z. Comptes Rendus Mathematique, 347(7-8), 401–406. https://doi.org/10.1016/j.crma.2009.01.030
Graham, R. L., Knuth, D. E., & Patashnik O. (1994). Concrete mathematics: a foundation for computer science, Second Edition. Addison-Wesley Professional.
Kozlov, S. M. (1985). The averaging method and walks in inhomogeneous environments. Uspekhi Mat. Nauk 40, 61–120, 238.
Lam, H. C. (2014). A quenched central limit theorem for reversible random walk in random environment on Z. Journal of Applied Probability, 51, 1051-1064.
Lâm, H. C. & Dương, T. B. B. (2017). Tốc độ hội tụ trong định lý giới hạn trung tâm cho bước đi ngẫu nhiên trong một chiều. Tạp chí Khoa học Đại học Cần Thơ, 49, 73-78. https://doi.org/10.22144/ctu.jvn.2017.010
Lâm, H. C., Trần, P. L., La, M. K., & Dương, T. T. (2021). Định lý giới hạn trung tâm trong mô hình trò chơi công bằng. Tạp chí Khoa học Đại học Cần Thơ, 57(2), 39-43. https://doi.org/10.22144/ctu.jvn.2021.036
Mathieu, P. (2008). Quenched invariance principles for random walks with random conductances. Journal of Statistical Physics, 130, 1025–1046. https://doi.org/10.1007/s10955-007-9465-z
Trotter, H. F. (1959). An elementary proof of the central limit theorem. Arch. Math (Basel), 10(1), 226-234. https://doi.org/10.1007/BF01240790