Synthesis and investigation of antimicrobial activity of bioplastic films from Persicaria odorata L. extract

Thi Kim Quy Ha1, , Khanh Nguyen Huan Pham1, Phu Hau Trieu1, Thi Nhu Y Quach1
1 College of Natural Sciences, Can Tho University, Vietnam

Main Article Content

Abstract

This study aims to synthesize a bioplastic film from sweet potato starch in combination with EtOH extract of Persicaria odorata Lour., showing the antimicrobial properties and biodegradability. The methodology includes investigating optimal conditions for bioplastic film synthesis combined with glycerol as a plasticizer and P. odorata extract. The bioplastic films were evaluated for sensory analysis, mechanical-physical properties, chemical characteristics, antibacterial and anti-mold activities, and biodegradation capacity. Results revealed that bioplastic films containing 15% glycerol and 20% extract exhibited potential sensory characteristics with a thickness of 0.24 mm, tensile strength of 8.42 N, and lower water absorption than films without plant extract. SEM analysis showed that extract-containing films had smoother surfaces with fewer pores. Notably, bioplastic films supplemented with 20% plant extract demonstrated inhibitory activity against Escherichia coli O157:H7 and Staphylococcus aureus, preventing mold growth. Additionally, these films exhibited favorable biodegradation properties, with mass reduction exceeding 30% after 6 days and complete decomposition after 18 days when buried in the soil. This study has demonstrated the potential to applying bioplastic films derived from sweet potato starch combined with P. odorata extract as a solution to mitigate the environmental impact of plastic waste while enhancing food safety.

Article Details

References

Amin, M. R., Chowdhury, M. A., & Kowser, M. A. (2019). Characterization and performance analysis of composite bioplastics synthesized using titanium dioxide nanoparticles with corn starch. Heliyon, 5(8). https://doi.org/10.1016/j.heliyon.2019.e02009.
Anugrahwidya, R., Armynah, B., & Tahir, D. (2021). Bioplastics starch-based with additional fiber and nanoparticle: characteristics and biodegradation performance: a review. Journal of Polymers and the Environment, 29(11), 3459–3476. https://doi.org/10.1007/s10924-021-02152-z.
Azmi, N., Zulkurnain, E. I., Ramli, S., James, R. J., & Halim, H. (2021). The phytochemical and pharmacological properties of Persicaria odorata: a review. Journal of Pharmaceutical Research International, 33(41B), 262–279. https://journaljpri.com/index.php/JPRI/article/view/3167.
Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205.
Çobanoğlu, M. S. (2023). Antibacterial bioplastic production with herbal extract. International Journal of Environmental Trends (IJENT), 7(1), 3–13. https://dergipark.org.tr/tr/download/article-file/2707516.
Đức, V. M., Liêm, N. T., Chi, Đ. T. K., & Giang, N. C. (2023). Nghiên cứu đánh giá khả năng phân hủy sinh học hoàn toàn của màng nhựa trên cơ sở tinh bột sắn và nhựa poly (butylene adipate-co-terephthalate) theo phương pháp định lượng CO2 sinh ra. Bản B Của Tạp Chí Khoa Học và Công Nghệ Việt Nam, 65(8). https://b.vjst.vn/index.php/ban_b/article/view/2477.
Duy, T. P., Minh, N. T., & Ngọc, H. G. (2021). Tổng hợp và khảo sát một số đặc tính của vật liệu dễ phân hủy sinh học từ tinh bột khoai tây. Tạp Chí Khoa Học Tài Nguyên và Môi Trường, 35, 38–46. https://vjol.info.vn/index.php/hunre/article/view/55770.
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782.
Ibrahim, N. I., Shahar, F. S., Sultan, M. T. H., Shah, A. U. M., Safri, S. N. A., & Mat Yazik, M. H. (2021). Overview of bioplastic introduction and its applications in product packaging. Coatings, 11(11), 1423. https://doi.org/10.3390/coatings11111423.
Jeyasubramanian, K., & Balachander, R. (2016). Starch bioplastic film as an alternative food-packaging material. Journal of Achievements in Materials and Manufacturing Engineering, 75(2), 78–84. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-3a7ca898-70e3-4dc6-81da-fc1218cdc79a.
Khalil, H. P. S. A., Davoudpour, Y., Saurabh, C. K., Hossain, M. S., Adnan, A. S., Dungani, R., Paridah, M. T., Sarker, M. Z. I., Fazita, M. R. N., & Syakir, M. I. (2016). A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renewable and Sustainable Energy Reviews, 64, 823–836. https://doi.org/10.1016/j.rser.2016.06.072.
Kharb, J., & Saharan, R. (2024). Development of biodegradable and eco-friendly fruit peel-derived bioplastic film with antibacterial potential for food packaging application. Biomass Conversion and Biorefinery, 1–16. https://doi.org/10.1007/s13399-024-05834-5.
Lubis, M., Harahap, M. B., Ginting, M. H. S., Sebayang, A. T., Chandra, T., & Wangi, Y. (2020). Mechanical, SEM and FTIR characteristics of bioplastics from mango seed starch with nanoparticle zinc oxide as filler and ethylene glycol as plasticizers. IOP Conference Series: Materials Science and Engineering, 1003(1), 12122. https://doi.org/10.1088/1757-899X/1003/1/012122.
Luong, N. H., & Thuan, H. M. (2020). Nhựa sinh học và khả năng triển khai tại Việt Nam. Petrovietnam Journal, 4, 32–39. https://www.tapchidaukhi.vn/index.php/TCDK/article/view/303.
Marichelvam, M. K., Jawaid, M., & Asim, M. (2019). Corn and rice starch-based bio-plastics as alternative packaging materials. Fibers, 7(4), 32. https://doi.org/10.3390/fib7040032.
Nanasombat, S. & Teckchuen, N. (2009). Antimicrobial, antioxidant and anticancer activities of Thai local vegetables. J Med Plants Res, 3(5), 443–449. https://academicjournals.org/journal/JMPR/article-full-text-pdf/A854CB115293.pdf.
Nasution, H., & Wulandari, G. (2021). The Effect of Betel (piper betle) leaf extract as antimicrobial agent on characteristics of bioplastic based on sago starch. IOP Conference Series: Materials Science and Engineering, 1122(1), 12098. https://doi.org/10.1088/1757-899X/1122/1/012098.
Ng, J. S., Kiew, P. L., Lam, M. K., Yeoh, W. M., & Ho, M. Y. (2022). Preliminary evaluation of the properties and biodegradability of glycerol-and sorbitol-plasticized potato-based bioplastics. International Journal of Environmental Science and Technology, 1–10. https://doi.org/10.1007/s13762-021-03213-5.
Phạm, K. N. H., Võ, T. K. M., & Hà, T. K. Q. (2024). Khảo sát điều kiện tổng hợp hệ vi hạt ZnO có bổ sung cao chiết lá bần chua (Sonneratia caseolaris L.) sử dụng mô hình bề mặt đáp ứng và đánh giá hoạt tính kháng oxi hóa của sản phẩm. CTU Journal of Science, 60, 374–382. https://doi.org/10.22144/ctujos.2024.358.
Prata, J. C., Da Costa, J. P., Lopes, I., Duarte, A. C. & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, 134455. https://doi.org/10.1016/j.scitotenv.2019.134455.
Ritchie, H., Samborska, V. & Roser, M. (2023). Plastic pollution. Our World in Data. https://ourworldindata.org/plastic-pollution.
Skvorčinskienė, R., Kiminaitė, I., Vorotinskienė, L., Jančauskas, A., & Paulauskas, R. (2023). Complex study of bioplastics: degradation in soil and characterization by FTIR-ATR and FTIR-TGA methods. Energy, 274, 127320. https://doi.org/10.1016/j.energy.2023.127320.
Wahyuningtiyas, N. E., & Suryanto, H. (2017). Analysis of biodegradation of bioplastics made of cassava starch. Journal of Mechanical Engineering Science and Technology, 1(1), 24–31. https://journal2.um.ac.id/index.php/jmest/article/view/1207.