Hydrothermal synthesis of CuO/biochar from longan seeds for effective adsorption of methyl orange in water

Tai Dang Kim , Ngoc Tram Nguyen1
1 Nguyen Binh Khiem High School, Vinh Long for the Gifted province, Vietnam

Main Article Content

Abstract

This study presents the synthesis of CuO/biochar adsorbent from Dimocarpus longan (longan) seeds using a hydrothermal method for the removal of methyl orange (MO) from aqueous solutions. The material was characterized using SEM, EDX, XRD, FT-IR, and BET analyses. The results confirmed the uniform distribution of CuO nanoparticles on the biochar surface, significantly increasing the specific surface area and adsorption capacity. Adsorption performance was investigated on contact time, solution pH, MO concentration, and adsorbent dosage. The adsorption process followed the Langmuir isotherm model, with a maximum adsorption capacity of 227.27 mg/g at pH 3 and an equilibrium time of 90 minutes. The pseudo-second-order kinetic model best described the adsorption behavior, indicating chemisorption as the dominant mechanism. These findings suggest that CuO/biochar derived from longan seeds is a promising and environmentally friendly material for removing anionic dyes from wastewater.

Article Details

References

Allwar, A., Ahdiaty, R., & Doong, R. (2022). Magnetic Fe₃O₄–CuO/biochar nanocomposite for adsorption of inorganic anions from aqueous solution. Rasayan Journal of Chemistry, 15(4), 2466–2476. http://doi.org/10.31788/RJC.2022.1547063
Chaukura, N., Murimba, E. C., & Gwenzi, W. (2017). Synthesis, characterisation and methyl orange adsorption capacity of ferric oxide–biochar nanocomposites derived from pulp and paper sludge. Applied Water Science, 7, 2175–2186. https://doi.org/10.1007/s13201-016-0392-5
Daffalla, S. B., Mukhtar, H., & Shaharun, M. S. (2010). Characterization of adsorbent developed from rice husk: Effect of surface functional group on phenol adsorption. Journal of Applied Sciences, 10, 1060–1067. https://doi.org/10.3923/jas.2010.1060.1067
Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10. https://doi.org/10.1016/j.cej.2009.09.013
Fu, Z., He, C., Li, H., Yan, C., Chen, L., Huang, J., & Liu, Y.-N. (2015). A novel hydrophilic–hydrophobic magnetic interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solution. Chemical Engineering Journal, 279, 250–257. https://doi.org/10.1016/j.cej.2015.04.146
Goncalves, S. P. C., Strauss, M., & Martinez, D. S. T. (2018). The positive fate of biochar addition to soil in the degradation of PHBV–silver nanoparticle composites. Environmental Science & Technology, 52, 13845–13853. https://doi.org/10.1021/acs.est.8b01524
Guan, J., Zhu, M., Zhou, J., Luo, L., Ferreira, L. F. R., Zhang, X., & Liu, J. (2023). Agricultural waste biochar after potassium hydroxide activation: Its adsorbent evaluation and potential mechanism. Bioresource Technology, 389, Article 129793. https://doi.org/10.1016/j.biortech.2023.129793.
Kamaru, A. A., Sani, N. S. & Malek, N. A. N. N. (2016). Raw and surfactant modified pineapple leaf as adsorbent for removal of methylene blue and methyl orange from aqueous solution. Desalination and Water Treatment, 57(40), 18836–18850. https://doi.org/10.1080/19443994.2015.1095122.
Lee, D.-J., Cheng, Y.-L., Wong, R.-J., & Wang, X.-D. (2018). Adsorption removal of natural organic matters in waters using biochar. Bioresource Technology, 260, 413–416. https://doi.org/10.1016/j.biortech.2018.04.016
Li, W., Liu, B., Wang, Z., Wang, K., Lan, Y., & Zhou, L. (2020). Efficient activation of peroxydisulfate (PDS) by rice straw biochar modified by copper oxide (RSBC-CuO) for the degradation of phenacetin (PNT). Chemical Engineering Journal, 395, 125094. https://doi.org/10.1016/j.cej.2020.125094
Liu, S., Xu, W. H., Liu, Y. G., Tan, X. F., Zeng, G. M., Li, X., ... & Cai, X. X. (2017). Facile synthesis of Cu(II)-impregnated biochar with enhanced adsorption activity for the removal of doxycycline hydrochloride from water. Science of the Total Environment, 592, 546–553. https://doi.org/10.1016/j.scitotenv.2017.03.087
Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chemical Reviews, 115, 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A. S., Bandoch, G. F. G., Asefa, T., & Almeida, V. C. (2015). Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chemical Engineering Journal, 260, 291–299. https://doi.org/10.1016/j.cej.2014.09.017
Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2019). Biochar-supported nanomaterials for environmental applications. Journal of Industrial and Engineering Chemistry, 78, 21–33. https://doi.org/10.1016/j.jiec.2019.06.008
Salahshour, R., Shanbedi, M., & Esmaeili, H. (2021). Methylene blue dye removal from aqueous media using activated carbon prepared by lotus leaves: Kinetic, equilibrium and thermodynamic study. Acta Chimica Slovenica, 68(2), 363–373. https://doi.org/10.17344/acsi.2020.6311
Tan, X. F., Liu, Y. G., Gu, Y. L., Xu, Y., Zeng, G. M., Hu, X. J., ... & Li, J. (2016). Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333. https://doi.org/10.1016/j.biortech.2016.04.093
Varughese, A., Kaur, R., & Singh, P. (2020). Green synthesis and characterization of copper oxide nanoparticles using Psidium guajava leaf extract. IOP Conference Series: Materials Science and Engineering, 961(1), 012011. https://doi.org/10.1088/1757-899X/961/1/012011
Wang, S., Dou, J., Zhang, T., Li, S., & Chen, X. (2023). Selective adsorption of methyl orange and methylene blue by porous carbon material prepared from potassium citrate. ACS Omega, 8(38), 35024–35033. https://doi.org/10.1021/acsomega.3c04124
Wei, X., Wang, X., Gao, B., Zou, W., & Dong, L. (2020). Facile ball-milling synthesis of CuO/biochar nanocomposites for efficient removal of reactive red 120. ACS Omega, 5(11), 5748–5755. https://doi.org/10.1021/acsomega.9b03787
Xu, X., Zheng, Y., Gao, B., & Cao, X. (2019). N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO₂ and reactive red. Chemical Engineering Journal, 368, 564–572. https://doi.org/10.1016/j.cej.2019.02.165
Xue, H., Wang, X., Xu, Q., Dhaouadi, F., Sellaoui, L., Seliem, M. K., Ben Lamine, A., Belmabrouk, H., Bajahzar, A., Bonilla-Petriciolet, A., Li, Z., & Li, Q. (2022). Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis. Chemical Engineering Journal, 430, 132801. https://doi.org/10.1016/j.cej.2021.132801
Zhao, R., Li, X., Sun, B., Ji, H., & Wang, C. (2017). Diethylenetriamine-assisted synthesis of amino-rich hydrothermal carbon-coated electrospun polyacrylonitrile fiber adsorbents for the removal of Cr(VI) and 2,4-dichlorophenoxyacetic acid. Journal of Colloid and Interface Science, 487, 297–309. https://doi.org/10.1016/j.jcis.2016.10.057
Zubair, M., Mu’azu, N. D., & Al-Harthi, M. A. (2020). Adsorption behavior and mechanism of methylene blue, crystal violet, eriochrome black T, and methyl orange dyes onto biochar-derived date palm fronds waste produced at different pyrolysis conditions. Water, Air, & Soil Pollution, 231(6), 240. https://doi.org/10.1007/s11270-020-04595-x.