Investigation of antibacterial activities of wells-dawson polyoxometalates

Thi Kim Nga Luong1, , Thi Ngoc Tran Nguyen1
1 Chemistry Department, College of Natural Sciences, Can Tho University, Vietnam

Main Article Content

Abstract

The study was conducted to investigate the antibacterial activity of 8 Wells-Dawson polyoxometalate (POM) compounds including a-K6P2W18O62.14H20  and b-K6P2W18O62.19H2O (P2W18), K10[a2-K6P2W17O61].20H2O (P2W17), 
K15H[CeIV(a2-P2W17O61)2].25H2O (CeIVWD 1:2), K15H[Zr(a2-P2W17O61)2].25H2O (ZrWD 1:2), Na14[Zr4(P2W16O59)2 (m3-O)2(OH)2(H2O)4].57H2O (ZrWD 4:2), a2-K8P2W17O61(CoII.H2O).16H2O (CoWD 1:1), a2-K8P2W17O61(NiII.H2O).17H2O (NiWD 1:1) và a2-K8P2W17O61(CuII.H2O).16H2O (CuWD 1:1) against 5 bacterial strains including Escherichia coli, Salmonella spp., Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus. The antibacterial activity of all 8 Wells-Dawson POM compounds was examined by the agar well diffusion method and/or the 2-fold serial dilution method. The experimental results showed that for 3 bacterial species Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, all 8 WD-POM compounds showed antibacterial activity. Among them, P2W18 showed the best antibacterial activity against all 3 bacterial strains and the minimum inhibitory concentration (MIC) values ​​were determined to be 0.1875 mM, 6, 3, and 6 times lower than the MIC values ​​of the tetracycline positive control, respectively. For Escherichia coli, only P2W18showed antibacterial ability with an average inhibition zone of 7,33±0,58 mm, about 4 times smaller than that of the tetracycline positive control. For Salmonella spp., all 8 Wells-Dawson POM compounds did not show antibacterial ability.

Article Details

References

Barsukova-Stuckart, M., Piedra-Garza, L. F., Gautam, B., Alfaro-Espinoza, G., Izarova, N. V., Banerjee, A., Bassil, B. S., Ullrich, M. S., Breunig, H. J., Silvestru, C., & Kortz, U. (2012). Synthesis and Biological Activity of Organoantimony(III)-Containing Heteropolytungstates. Inorganic Chemistry, 51(21), 12015–12022. https://doi.org/10.1021/ic301892s
Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology, 45(4_ts), 493–496. https://doi.org/10.1093/ajcp/45.4_ts.493
Bijelic, A., Aureliano, M., & Rompel, A. (2018). The antibacterial activity of polyoxometalates: Structures, antibiotic effects and future perspectives. Chemical Communications (Cambridge, England), 54(10), 1153–1169. https://doi.org/10.1039/c7cc07549a
Gaunt, A. J., May, I., Collison, D., Travis Holman, K., & Pope, M. T. (2003). Polyoxometal cations within polyoxometalate anions. Seven-coordinate uranium and zirconium heteroatom groups in [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32− and [Zr4(μ3-O)2(μ2-OH)2(H2O)4 (P2W16O59)2]14−. Journal of Molecular Structure, 656(1–3), 101–106. http://dx.doi.org/10.1016/S0022-2860(03)00272-2
Ginsberg, A. P. (1990). Inorganic syntheses (Vol. 27). John Wiley & Sons.
Hu, T., Li, Y.-H., Kuang, X.-F., & Lu, C.-Z. (2017). Synthesis and characterization of polyoxometalate-based silver(i) phenylethynide compounds with antibacterial and antifungal activities. CrystEngComm, 19(25), 3445–3454. https://doi.org/10.1039/C7CE00180K
Kato, C. N., Shinohara, A., Hayashi, K., & Nomiya, K. (2006). Syntheses and X-ray crystal structures of zirconium(IV) and hafnium(IV) complexes containing monovacant wells-Dawson and Keggin polyoxotungstates. Inorganic Chemistry, 45(20), 8108–8119. https://doi.org/10.1021/ic060656e
Sezonov, G., Joseleau-Petit, D., & D’Ari, R. (2007). Escherichia coli Physiology in Luria-Bertani Broth. Journal of Bacteriology, 189(23), 8746–8749. https://doi.org/10.1128/jb.01368-07
Bush, L. M. & Perez, M. T. (2022). Nhiễm khuẩn do Escherichia coli. Cẩm Nang MSD Dành Cho Chuyên Gia.
https://www.msdmanuals.com/vi/professional/b%E1%BB%87nh-truy%E1%BB%81n-nhi%E1%BB%85m/tr%E1%BB%B1c-khu%E1%BA%A9n-gram-%C3%A2m/nhi%E1%BB%85m-khu%E1%BA%A9n-do-escherichia-coli
Grama, L., Man, A., Muntean, D., Andrei, Ș., Florea, G., Boda, F. & Curticăpean, A. (2014). Antibacterial activity of some saturated polyoxotungstates. Romanian Review of Laboratory Medicine, Volume 22(1), 111–118. https://doi.org/10.2478/rrlm-2014-0007
Luong, T. K. N., Absillis, G., Shestakova, P., & Parac-Vogt, T. N. (2014). Solution Speciation of the Dinuclear ZrIV-Substituted Keggin Polyoxometalate [{α-PW11O39Zr(μ-OH)(H2O)}2]8– and Its Reactivity towards DNA-Model Phosphodiester Hydrolysis. European Journal of Inorganic Chemistry, 2014(31), 5276–5284. https://doi.org/10.1002/ejic.201402735
Luong, T. K. N., Absillis, G., Shestakova, P., & Parac-Vogt, T. N. (2015). Hydrolysis of the RNA model substrate catalyzed by a binuclear Zr(IV)-substituted Keggin polyoxometalate. Dalton Transactions (Cambridge, England: 2003), 44(35), 15690–15696. https://doi.org/10.1039/c5dt02077h
Luong, T. K. N., Govaerts, I., Robben, J., Shestakova, P., & Parac-Vogt, T. N. (2017). Polyoxometalates as artificial nucleases: Hydrolytic cleavage of DNA promoted by a highly negatively charged ZrIV-substituted Keggin polyanion. Chemical Communications, 53(3), 617–620. https://doi.org/10.1039/C6CC08555E
Luong, T. K. N., Shestakova, P., Absillis, G., & Parac-Vogt, T. N. (2016a). Detailed Mechanism of Phosphoanhydride Bond Hydrolysis Promoted by a Binuclear Zr(IV)-Substituted Keggin Polyoxometalate Elucidated by a Combination of 31P, 31P DOSY, and 31P EXSY NMR Spectroscopy. Inorganic Chemistry, 55(10), 4864–4873. https://doi.org/10.1021/acs.inorgchem.6b00385
Luong, T. K. N., Shestakova, P., & Parac-Vogt, T. N. (2016b). Kinetic studies of phosphoester hydrolysis promoted by a dimeric tetrazirconium(iv) Wells-Dawson polyoxometalate. Dalton Transactions (Cambridge, England: 2003), 45(30), 12174–12180. https://doi.org/10.1039/c6dt02211a
Luong, T. K. N., Mihaylov, T. T., Absillis, G., Shestakova, P., Pierloot, K., & Parac-Vogt, T. N. (2016c). Phosphate Ester Bond Hydrolysis Promoted by Lanthanide-Substituted Keggin-type Polyoxometalates Studied by a Combined Experimental and Density Functional Theory Approach. Inorganic Chemistry, 55(19), 9898–9911. https://doi.org/10.1021/acs.inorgchem.6b01802
Lương, T. K. N., Triệu, P. H., Phan, T. T., & Vandebroek, L. (2021). Hoạt tính kháng nấm và kháng khuẩn của các hợp chất Wells-Dawson polyoxometalate. Tạp Chí Khoa Hoc Trường Đại Học Cần Thơ, 57(2A), 49–57. https://doi.org/DOI:10.22144/ctu.jvn.2021.037
Mandell, L. A., Ball, P., & Tillotson, G. (2001). Antimicrobial Safety and Tolerability: Differences and Dilemmas. Clinical Infectious Diseases, 32(Supplement_1), S72–S79. https://doi.org/10.1086/319379
Nakano, M. M., & Zuber, P. (1998). Anaerobic Growth of a “Strict Aerobe” (Bacillus subtilis). Annual Review of Microbiology, 52(Volume 52, 1998), 165–190. https://doi.org/10.1146/annurev.micro.52.1.165
Paul, T. J., Parac-Vogt, T. N., Quiñonero, D., & Prabhakar, R. (2018). Investigating Polyoxometalate–Protein Interactions at Chemically Distinct Binding Sites. The Journal of Physical Chemistry B, 122(29), 7219–7232. https://doi.org/10.1021/acs.jpcb.8b02931
Safitri, W. N. (2023). The Study of Resistance Aeromonas Hydrophila to Antibiotics from Aquaculture Systems in Banten Province, Indonesia. International Journal of Research Publication and Reviews, 4(5).
Samia, N. I., Robicsek, A., Heesterbeek, H., & Peterson, L. R. (2022). Methicillin-resistant staphylococcus aureus nosocomial infection has a distinct epidemiological position and acts as a marker for overall hospital-acquired infection trends. Scientific Reports, 12(1), 17007. https://doi.org/10.1038/s41598-022-21300-6
Vanhaecht, S., Absillis, G., & Parac-Vogt, T. N. (2012). Hydrolysis of DNA model substrates catalyzed by metal-substituted Wells-Dawson polyoxometalates. Dalton Transactions, 41(33), 10028–10034. https://doi.org/10.1039/c2dt30588g
Wikler MA, C. F. (2009). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard–Eighth edition. Clinical and Laboratory Standards Institute.
Yamase, T. (2005). Anti-tumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. Journal of Materials Chemistry, 15(45), 4773–4782. https://doi.org/10.1039/B504585A
Yang, P., Bassil, B. S., Lin, Z., Haider, A., Alfaro-Espinoza, G., Ullrich, M. S., Silvestru, C., & Kortz, U. (2015). Organoantimony(III)-Containing Tungstoarsenates(III): From Controlled Assembly to Biological Activity. Chemistry: A European Journal, 21(44), 15600–15606. https://doi.org/10.1002/chem.201502398
Yang, P., Lin, Z., Alfaro-Espinoza, G., Ullrich, M. S., Raţ, C. I., Silvestru, C., & Kortz, U. (2016). 19-Tungstodiarsenate(III) Functionalized by Organoantimony(III) Groups: Tuning the Structure–Bioactivity Relationship. Inorganic Chemistry, 55(1), 251–258. https://doi.org/10.1021/acs.inorgchem.5b02189