Deep learning-based interatomic potentials for predicting thermodynamic properties of two-dimensional Ge/MoS2 systems
Main Article Content
Abstract
This study presents the development and application of machine learning interatomic potentials based on neural networks for simulating two-dimensional materials, specifically monolayer Germanene, monolayer MoS2, and the heterostructure Ge/MoS2. Using first-principles molecular dynamics data, the ML models were trained via the DeePMD-kit framework to predict formation energies and atomic forces. The results demonstrate that machine learning can efficiently capture energy landscapes with high accuracy, even with limited training data. In contrast, predictions of moderately accurate atomic forces exhibit higher absolute errors, particularly affecting phonon calculations. Optimal neural network configurations were identified for each material system, enabling enhanced learning performance. This work confirms the potential of machine learning, particularly deep learning-based potentials, in accelerating thermodynamic modeling of 2D heterostructures with significantly reduced computational cost compared to traditional ab initio methods. Additionally, it underscores the need for more diverse datasets to enhance the reliability of force prediction in dynamical simulations.
Keywords
Deep learning, machine learning, neural networks
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Behler, J., & Parrinello, M. (2007). Generalized neural-network representation of high-dimensional potential-energy surfaces. Physical Review Letters, 98(14), 146401. https://doi.org/10.1103/PhysRevLett.98.146401
Coello-Fiallos, D., Tene, T., Guayllas, J. L., Haro, D., Haro, A., & Vacacela Gomez, C. (2017). DFT comparison of structural and electronic properties of graphene and germanene: monolayer and bilayer systems. Materials Today: Proceedings, 4(7), 6835–6841. https://doi.org/10.1016/j.matpr.2017.07.011
Dang, M. T., Long, N. T., Thi Phung, V. B., Trang, N. T. B., Nguyen, T. A., Tran, T. N., Duy, N. V. A., Van, N. T., Nghia, N. Van, & Schall, P. (2025). Resolving adsorption mechanism of sodium polysulfides on Tim+1CmO2 MXenes for application in sodium-sulfur batteries: A first-principles study. Applied Surface Science, 687, 162210. https://doi.org/10.1016/J.APSUSC.2024.162210
Jiang, J. W., Park, H. S., & Rabczuk, T. (2013). Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity. Journal of Applied Physics, 114(6). https://doi.org/10.1063/1.4818414/372441
Merchant, A., Batzner, S., Schoenholz, S. S., Aykol, M., Cheon, G., & Cubuk, E. D. (2023). Scaling deep learning for materials discovery. Nature, 624(7990), 80–85. https://doi.org/10.1038/S41586-023-06735-9
Pang, Q., Xin, H., Gao, D. li, Zhao, J., Chai, R. peng, & Song, Y. ling. (2021). Strain effect on the electronic and optical properties of Germanene/MoS2 heterobilayer. Materials Today Communications, 26, 101845. https://doi.org/10.1016/j.mtcomm.2020.101845
Peng, B., Zhang, H., Shao, H., Xu, Y., Ni, G., Zhang, R., & Zhu, H. (2016). Phonon transport properties of two-dimensional group-IV materials from ab initio calculations. Physical Review B, 94(24), 245420. https://doi.org/10.1103/PHYSREVB.94.245420/FIGURES/9/THUMBNAIL
Rai, D. P., Vu, T. V., Laref, A., Joshi, H., & Patra, P. K. (2020). Promising optoelectronic response of 2D monolayer MoS2: A first principles study. Chemical Physics, 538, 110824. https://doi.org/10.1016/j.chemphys.2020.110824
Saxena, D., & Cao, J. (2021). Generative Adversarial Networks (GANs). ACM Computing Surveys, 54(3). https://doi.org/10.1145/3446374
Szymanski, N. J., Rendy, B., Fei, Y., Kumar, R. E., He, T., Milsted, D., McDermott, M. J., Gallant, M., Cubuk, E. D., Merchant, A., Kim, H., Jain, A., Bartel, C. J., Persson, K., Zeng, Y., & Ceder, G. (2023). An autonomous laboratory for the accelerated synthesis of novel materials. Nature, 624(7990), 86–91. https://doi.org/10.1038/s41586-023-06734-w
Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in ’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., Shan, R., Stevens, M. J., Tranchida, J., Trott, C., & Plimpton, S. J. (2022). LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271, 108171. https://doi.org/10.1016/j.cpc.2021.108171
Togo, A., Chaput, L., Tadano, T., & Tanaka, I. (2023). Implementation strategies in phonopy and phono3py. Journal of Physics: Condensed Matter, 35(35), 353001. https://doi.org/10.1088/1361-648X/acd831
Tran, T. N., Dang, M. T., Tran, Q. H., Luong, T. T., & Dinh, V. A. (2022). Band valley modification under strain in monolayer WSe2. AIP Advances, 12(11). https://doi.org/10.1063/5.0127204/2819777
van der Laan, M., Heemskerk, E., Kienhuis, F., Diepeveen, N., Poonia, D., Kinge, S., Dang, M. T., Dinh, V. A., Siebbeles, L. D. A., Isaeva, A., van de Groep, J., & Schall, P. (2023). Stacking-Order-Dependent Excitonic Properties Reveal Interlayer Interactions in Bulk ReS2. ACS Photonics, 10(9), 3115–3123. https://doi.org/10.1021/ACSPHOTONICS.3C00477/ASSET/IMAGES/LARGE/PH3C00477_0005.JPEG
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7(11), 699–712. https://doi.org/10.1038/nnano.2012.193
Zeng, J., Zhang, D., Lu, D., Mo, P., Li, Z., Chen, Y., Rynik, M., Huang, L., Li, Z., Shi, S., Wang, Y., Ye, H., Tuo, P., Yang, J., Ding, Y., Li, Y., Tisi, D., Zeng, Q., Bao, H., … Wang, H. (2023). DeePMD-kit v2: A software package for deep potential models. Journal of Chemical Physics, 159(5), 54801. https://doi.org/10.1063/5.0155600
Zhang, L., Han, J., Wang, H., Car, R., & Weinan, E. (2018). Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics. Physical Review Letters, 120(14), 143001. https://doi.org/10.1103/PhysRevLett.120.143001
Zhang, L., Han, J., Wang, H., Saidi, W., Car, R., & E, W. (2018). End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for Finite and Extended Systems. Advances in Neural Information Processing Systems, 31.
Zhang, Z. (2023). Automated Graph Neural Networks Accelerate the Screening of Optoelectronic Properties of Metal-Organic Frameworks. Journal of Physical Chemistry Letters, 14(5), 1239–1245. https://doi.org/10.1021/acs.jpclett.3c00187
Most read articles by the same author(s)
- Duy Khanh Nguyen, Social work with divorced family children in Tan Phu Dong district, Tien Giang province , Dong Thap University Journal of Science: No. 38 (2019): Part A - Social Sciences and Humanities
- Hai Dang Nguyen, Nha Nghi Ho, Minh Triet Dang, Thanh Tien Nguyen, Application of machine learning model in material simulation using Python on Google Colab , Dong Thap University Journal of Science: Vol. 14 No. 04S (2025): Special Issue of Mekong Delta Natural Science Conference