A new approach to zero duality gap of vector optimization problems using characterizing sets

Hai Long Dang1, Hong Mo Tran2,
1 Faculty of Natural Sciences, Tien Giang University, Vietnam
2 Office of Academic Affairs, Tien Giang University, Vietnam

Main Article Content

Abstract

In this paper we propose results on zero duality gap in vector optimization problems posed in a real locally convex Hausdorff topological vector space with a vector-valued objective function to be minimized under a set and a convex cone constraint. These results are then applied to linear programming.

Article Details

References

Anderson, E.J. (1983). A review of duality theory for linear programming over topological vector spaces. J. Math. Anal. Appl., 97(2), 380-392.
Andreas, L. (2011). Vector optimization with infimum and supremum. Berlin: Springer- Verlag.
Bot, R.I. (2010). Conjugate duality in convex optimization. Berlin: Springer.
Bot, R.I., Grad, S.M., & Wanka, G. (2009): Duality in Vector Optimization. Berlin: Springer-Verlag.
Cánovas, M. J., Dinh, N., Long, D. H., & Parra, J. (2021). A new approach to strong duality for composite vector optimization problems. Optimization. Optimization. [10.1080/02331934.2020.1745796].
Elvira, H., Andreas, L., Luis, R., & Tammer, C. (2013). Lagrange duality, stability and subdifferentials in vector optimization.
Optimization, 62(3), 415-428.
Jeyakumar, V., & Volkowicz, H. (1990). Zero duality gap in infinite-dimensional programming. J. Optim. Theory Appl., 67(1), 88-108.
Khan, A., Tammer, C., & Zalinescu, C. (2005). Set-valued optimization: An introduction with applications. Heidelberg: Springer.
Nguyen, D., Long, D. H., Mo, T. H., & Yao, J. C. (2020). Approximate Farkas lemmas for vector systems with applications to convex vector optimization problems. J. Non. Con. Anal., 21(5), 1225-1246.
Nguyen, D., & Dang, H. L. (2018). Complete characterizations of robust strong duality for robust vector optimization problems. Vietnam J. Math., 46(2), 293-328. https://doi.org/10.1007/s10013-018-0283-1.
Nguyen, D., Goberna, M. A., López, M. A., & Tran, H. M. (2017). Farkas-type results for vector-valued functions with applications. Journal of Optimization Theory and Applications, 173, 357-390. https://doi.org/10.1007/s10957-016-1055-2.
Nguyen, D., Goberna, M.A., Dang, H. L., & Lopez, M.A. (2019). New Farkas-type results for vector-valued functions: A non- abstract approach. J. Optim. Theory Appl., 82(1), 4-29. https://doi.org/10.1007/s10957-018-1352-z.
Nguyen, T. V., Kim, D.S., Nguyen, N. T., & Nguyen, D. Y. (2016). Duality gap function in infinite dimensional linear programming. J. Math. Anal. Appl., 437(1), 1-15. https://doi.org/10.1016/j.jmaa.2015.12.043
Pham, D. K., Tran, H. M., & Tran, T. T. T. (2019). Necessary and sufficient conditions for qualitative properties of infinite dimensional linear programming problems. Numer. Funct. Anal. Optim., 40(8), 924-943. https://doi.org/10.1080/01630563.2019.1566244.
Rudin, W. (1991). Functional analysis (2nd Edition). New York: McGraw-Hill.
Tanino, T. (1992). Conjugate duality in vector optimization. J. Math. Anal. Appl., 167(1), 84-97.
Wen, S. (1998). Duality in set-valued optimization. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk.
Zalinescu, C. (2002). Convex analysis in general vector spaces. Singapore: World Scientificc Publishing.