Utilizing silica from rice husk ash to synthesize NaX zeolite for adsorbing Cr(VI) ions from water

Luong Huynh Vu Thanh1, , Le Thanh Phu2, Nguyen Ngoc Yen2,3, Pham Duy Toan3
1 Faculty of Chemical Engineering, Can Tho University
2 Applied Chemical Engineering Lab, Can Tho University, Vietnam
3 Department of Health Sciences, Can Tho University, Vietnam

Nội dung chính của bài viết

Tóm tắt

This study aimed to use rice husk ash (RHA) as an agricultural by-product combined with heat treatment to recover silica and synthesize zeolite NaX through a hydrothermal method, optimizing the synthesis conditions. The molar ratio of reactants used in the synthesis was 4.2Na2O:Al2O3:3SiO2:18H2O, with an aging time of 24 hours at room temperature and a crystallization time of 6 hours at 100°C. The adsorption of Cr(VI) ions in solution was optimized under conditions of pH 4.0, an initial Cr(VI) concentration of 120 mg/L, and a 30-minute adsorption time. The properties of the synthesized materials were characterized by X-ray diffraction (XRD) to identify characteristic diffraction peaks, and scanning electron microscopy (SEM) showed that the zeolite NaX had an average diameter of 113.16±0.12 nm. The study assessed the first-order and second-order adsorption kinetic models, as well as the Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms. Under the kinetic models, the adsorption of Cr(VI) ions onto the zeolite NaX followed the Langmuir isotherm model, with second-order kinetics and physical adsorption.

Chi tiết bài viết

Tài liệu tham khảo

Akinjokun, A. I., Ogunfowokan, A. O., Ajao, J., Petrik, L. F., & Ojumu, T. V. (2024). Template-free conversion of rice husk silica into nano-zeolite X and its application in adsorption of heavy metal ions. International Journal of Environmental Science Technology, 21(2), 1949-1960. https://doi.org/10.1007/s13762-023-05076-4.
Bensafi, B., Chouat, N., & Djafri, F. (2023). The universal zeolite ZSM-5: Structure and synthesis strategies. A review. Coordination Chemistry Reviews, 496, 215397. https://doi.org/10.1016/j.ccr.2023.215397.
Berger, C., Gläser, R., Rakoczy, R. A., Weitkamp, J. (2005). The synthesis of large crystals of zeolite Y re-visited. Micropor. Mesoporo. Mater. 83, 333-344. https://doi.org/10.1016/j.micromeso.2005.04.009
Cao, C., Xuan, W., Yan, S., & Wang, Q. (2023). Zeolites synthesized from industrial and agricultural solid waste and their applications: A review. Journal of Environmental Chemical Engineering, 11(5), 110898. https://doi.org/10.1016/j.jece.2023.110898.
Chowdhury, A., Kumari, S., Khan, A. A., & Hussain, S. (2020). Selective removal of anionic dyes with exceptionally high adsorption capacity and removal of dichromate (Cr2O72-) anion using Ni-Co-S/CTAB nanocomposites and its adsorption mechanism. Journal of Hazardous Materials, 385, 121602. https://doi.org/10.1016/j.jhazmat.2019.121602.
Debnath, S., & Ghosh, U. C. (2008). Kinetics, isotherm and thermodynamics for Cr (III) and Cr (VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. The Journal of Chemical Thermodynamics, 40(1), 67-77. https://doi.org/10.1016/j.jct.2007.05.014
de Carvalho, G. G. A., Kelmer, G. A., Fardim, P., Oliveira, P. V., & Petri, D. F. (2018). Hybrid polysaccharide beads for enhancing adsorption of Cr (VI) ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 558, 144-153. https://doi.org/10.1016/j.colsurfa.2018.08.053
Ding, R.D., Yun, Z. U., Zhou, C. H., Huan, W. A. N. G., Mo, Z. S., Qin, Y. C., ... & Song, L. J. (2018). Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite. Journal of Fuel Chemistry Technology, 46(4), 451-458. https://doi.org/10.1016/S1872-5813(18)30020-3.
Khan, M.N., & Sarwar, A. (2007). Determination of points of zero charge of natural and treated adsorbents. Surface Review Letters, 14(03), 461-469. https://doi.org/10.1142/S0218625X07009517Cited
Khatun, J., Intekhab, A., & Dhak, D. (2022). Effect of uncontrolled fertilization and heavy metal toxicity associated with arsenic (As), lead (Pb) and cadmium (Cd), and possible remediation. Toxicology, 477, 153274. https://doi.org/10.1016/j.tox.2022.153274.
Le, T. P., Luong, H. V. T., Nguyen, H. N., Pham, T. K. T., Le, T. L. T., Tran, T. B. Q., & Ngo, T. N. M. (2024). Insight into adsorption-desorption of methylene blue in water using zeolite NaY: Kinetic, isotherm and thermodynamic approaches. Results in Surfaces Interfaces, 16, 100281. https://doi.org/10.1016/j.rsurfi.2024.100281.
Masoud, M. S., Zidan, A. A., El Zokm, G. M., Elsamra, R. M., & Okbah, M. A. (2024). Humic acid and nano-zeolite NaX as low cost and eco-friendly adsorbents for removal of Pb(II) and Cd(II) from water: characterization, kinetics, isotherms and thermodynamic studies. Biomass Conversion Biorefinery, 14(3), 3615-3632. https://doi.org/10.1007/s13399-022-02608-9.
Miretzky, P., & Cirelli, A. F. (2010). Cr (VI) and Cr (III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of Hazardous Materials, 180(1-3), 1-19. https://doi.org/10.1016/j.jhazmat.2010.04.060.
Mirzaei, D., Zabardasti, A., Mansourpanah, Y., Sadeghi, M., & Farhadi, S. (2020). Efficacy of novel NaX/MgO–TiO2 zeolite nanocomposite for the adsorption of methyl orange (MO) dye: Isotherm, kinetic and thermodynamic studies. Journal of Inorganic Organometallic Polymers Materials 30(6), 2067-2080. https://doi.org/10.1007/s10904-019-01369-9.
Ngoan, N. H., Thanh, L. H., Phu, L. T., Giao, D. H., & Mai, N. T. (2025). Improving copper ions adsorption using Ca-modified NaY zeolite synthesized from calcined rice husk ash. Journal of Sol-Gel Science Technology, 113, 438-449. https://doi.org/10.1007/s10971-024-06637-w.
Rathi, B. S., & Kumar, P. S. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995.
Saleh, T. A., Mustaqeem, M., & Khaled, M. (2022). Water treatment technologies in removing heavy metal ions from wastewater: A review. Environmental Nanotechnology, Monitoring Management, 17, 100617. https://doi.org/10.1016/j.enmm.2021.100617.
Wang, Y., Du, T., Jia, H., Qiu, Z., & Song, Y. (2018). Synthesis, characterization and CO2 adsorption of NaA, NaX and NaZSM-5 from rice husk ash. Solid State Sciences, 86, 24-33. https://doi.org/10.1016/j.solidstatesciences.2018.10.003.
Zeng, Y., Woo, H., Lee, G., & Park, J. (2010). Adsorption of Cr (VI) on hexadecylpyridinium bromide (HDPB) modified natural zeolites. Microporous Mesoporous Materials, 130(1-3), 83-91. https://doi.org/10.1016/j.micromeso.2009.10.016.