Effects of photoperiod on growth performance, survival and stress resistance of juvenile giant trevally (Caranx ignobilis)

Thi Thanh Hoang1, Thi Anh Pham1, , Van Manh Ngo1
1 Institute of Aquaculture, Nha Trang University, Vietnam

Main Article Content

Abstract

This study was carried out to evaluate the effects of different photoperiod on the growth performance, survival rate, and stress resistance of juvenile giant travelley. Fish were fed four times a day (at 7:00; 10:30; 14:00 and 17:30). The experiment was designed with three different photoperiods:  12 hours, 18 hours, 24 hours, and the control treatment—natural photoperiod with three triplicated. A total of 1680 fish were randomly distributed among composite tank of 100 liters (70 liters of water volume). After 28 days, fish samples were collected to analyze survival rate, growth performance, heteromorphic ratio, FCR, and stress resistance. Results indicated that final weight and specific growth rate were significantly influenced by the photoperiod. Juvenile giant travelly exhibited the highest growth under the natural photoperiod, with the final length and weight of 63,25 ± 1,85 cm/fish and 3,51± 0,01 g/fish, respectively, that was not diffence with 12h but differing significantly from the 18 hours and 24 hours of treatment. The highest survival rate in the 24-hour treatment (96,07%), and the lowest survival in the control treatment (85%) and have statistically significant differences. The worst resistance shock was in the 24-hour treatment after 30 minutes of temperature and 10 minutes of sanility. Thus, the optimum photoperiod for juvenile giant trevally rearing could be a 12 hours of photoperiods

Article Details

References

Abdollahpour, H., Falahatkar, B., & Lawrence, C. (2020). The effect of photoperiod on growth and spawning performance of zebrafish Danio rerio. Aquaculture. Rep., 17, Article 100295
Almazan-Rueda, P., van Helmond, A.T.M., Verreth, J.A.J., & Schrama, J.W. (2005). Photoperiod affects growth, behaviour and stress variables in Clarias gariepinus. J. Fish. Biology., 67 (2005), pp. 1029-1039
Aride, P. H. R., Gomes, M. F. S., Azevedo, D. G., Sangali, G. R., Silva, A. C. F., Lavander, H. D., Souza, A. B., Polese, M. F., Mattos, D. C., & Bassul, L. A. (2021). Dusky grouper Epinephelus marginatus growth and survival when exposed to different photoperiods. Fishes, 6 (2021), p. 31
Arvedlund, M., & Nielsen, L. E. (1996). Do the anemonefish Amphiprion ocellaris (Pisces: Pomacentridae) imprint themselves to their host sea anemone Heteractis magnifica (Anthozoa: Actinidae). Ethology, 102, 197-211
Arvedlund, M., McCormick, M., & Ainsworth, T. (2000). Effects of photoperiod on growth of larvae and juveniles of the anemonefish Amphiprion melanopus. Naga: The ICLARM Quarterly, 23(2), 18-23.
Baekelandt, S., Mandiki, S. N. M., Schmitz, M., & Kestemont, P. (2019). Influence of the light spectrum on the daily rhythms of stress and humoral innate immune markers in pikeperch Sander lucioperca. Aquaculture, 499, 358–363. https://doi.org/10.1016/j.aquaculture.2018.09.046
Barahona-Fernandes, M. H. (1979). Some effects of light intensity and photoperiod on the seabass larvae (Dicentrarchus labrax (L.) reared at the Centre Oceanologique de Bretagne. Aquaculture, 17, 311-321.
Barlow, C. G., Pearce, M. G., Rodgers, L.J., & Clayton, P. (1995). Effects of photoperiods on growth, survival and feeding periodicity of larval and juvenile barramundi Lates calcarifer (Bloch). Aquaculture, 138, 159- 168.
Biswas, A. K., Manabu, S., Yoshimasa, T., KenJi, T., & Hidemi, K. (2006). Effect of photoperiod manipulation on the growth performance and stress response of juvenile red sea bream (Pagrus major). Aquaculture, 258, 350 – 356.
Boehlert, G. W. (1981). The effects of photoperiod and temperatures on laboratory growth of juveniles Sebastes diploprora and a comparison with growth in the field. Fish. Bull. 79(4):789-794.
Boeuf, G., & Le Ball, P. Y. (1999). Does light have an influence on fish growth. Aquaculture 177, 129 – 152.
Đinh, V. K., Hoàng, T., & Hoàng, T. B. Đ. (2008). Ảnh hưởng của chu kỳ quang và cường độ chiếu sáng lên sinh trưởng, sự phân đàn, tỷ lệ sống và tỷ lệ ăn thịt đồng loại của cá chẽm (Lates calcarifer Bloch). Tạp chí Khoa học – Công nghệ Thủy sản, số 03/2008.
Imsland, A. K. D., Gunnarsson, S., & Thorarensen, H. (2020). Impact of environmental factors on the growth and maturation of farmed Arctic charr. Reviews in Aquaculture, 12(3), 1689-1707. https://doi.org/10.1111/raq.12404
Foss, A., Siikavuopio, S. I., & Imsland, A. K. D. (2020). Effects of altered photoperiod regimes during winter on growth and gonadosomatic index in Arctic charr (Salvelinus alpinus) reared in freshwater. Aquaculture Res. 51 (4), 1365–1371. https://doi.org/10.1111/are.14481
Fuchs, J. (1978). Influence de la photoperiode sur la croissance et la survie de la larve et du juvenile de sole (Solea solea) en Clevage. Aquaculture, 15, 63–74.
Hangying, X., Shi, C., Ye, Y., Mu, C., & Wang. C. (2022). Effects of different photoperiods and feeding regimes on immune response, oxidative status, and tissue damage in juvenile rainbow trout (Oncorhynchus mykiss). Frontiers in Marine Science, Volume 9 - 2022 https://doi.org/10.3389/fmars.2022.1036289
Hart, P. R., Hutchinson, W. G., & Purser, G. J. (1996). Effects of photoperiod, temperature and salinity on hatchery-reared larvae of the greenback flounder (Rhombosolea tapirina Gunther, 1862). Aquaculture, 144, 303–311.
Hou, Z., Wen, H., Li, J., He, F., Li, Y., Qi, X., & Zhao, J. (2019). Effects of photoperiod and light Spectrum on growth performance, digestive enzymes, hepatic biochemistry and peripheral hormones in spotted sea bass, Lateolabrax maculatus. Aquaculture, 507, 419–427.
Kitagawa, A. T., Costa, L. S., Paulino, R. R., Luz, R. K., Rosa, P. V., Guerra-Santos, B., & Fortes-Silva, R. (2015). Feeding behavior and the effect of photoperiod on the performance and hematological parameters of the pacamã catfish (Lophiosilurus alexandri). Appl. Anim. Behav. Sci., 171 (2015), pp. 211-218
Leonardi, M., & Klempau, A. (2003). Artificial photoperiod influence on the immune system of juvenile rainbow trout (Oncorhynchus mykiss) in the Southern hemisphere. Aquaculture, 221 (2003), pp. 581-591.
Li, X., Wei, P., Liu, S., Tian, Y., Ma, H., & Liu, Y. (2021). Photoperiods affect growth, food intake and physiological metabolism of juvenile European sea bass (Dicentrachus labrax L.) Aquaculture. Rep., 20 (2021), Article 100656.
Liu, Y., Li, X., Xu, G. F., Bai, S. Y., Zhang, Y. Q., Gu, W., & Mou, Z. B. (2014). Effect of photoperiod manipulation on the growth performance of juvenile lenok, Brachymystax lenok (Pallas, 1773). Journal of Applied Ichthyology 31(1). https://doi.org/10.1111/jai.12632
Malinovskyi, O., Rahimnejad, S., Stejskal, V., Boňko, D., Stará, A., Velíšek, J., & Policar, T. (2022). Effects of different photoperiods on growth performance and health status of largemouth bass (Micropterus salmoides) juveniles. Aquaculture, Volume 548, Part 1. https://doi.org/10.1016/j.aquaculture.2021.737631
Moustakas, C. T. H., Watanabe, W. O., & Copeland, K. A. (2004). Combined effects of photoperiod and salinity on growth, survival, and osmoregulatory ability of larval southern flounder Paralichthys lethostigma. Aquaculture, 229, 159–179.
Ottinger, M., Clauss, K., & Kuenzer, C. (2016). Aquaculture: Relevance, distribution, impacts and spatial assessments – A review. Ocean. Coast. Manag. 119, 244–266.
Petit, G., Beauchaud, M., Attia, J., & Buisson, B. (2003). Food intake and growth of largemouth bass (Micropterus salmoides) held under alternated light/dark cycle (12L: 12D) or exposed to continuous light. Aquaculture 228, 397-401. https://doi.org/10.1016/S0044-8486(03)00315-6
Phạm, Đ. H. (2023). Nghiên cứu quy trình sản xuất giống và nuôi thương phẩm cá bè vẫu (Caranx ignobilis Forsskal, 1775) tại Khánh Hòa. Báo cáo tổng kết đề tài cấp tỉnh. Trường Đại học Nha Trang.
Purchase, C. F., Boyce, D. L., & Brown, J. A. (2000). Growth and survial of juvenile flounderPleuronectes ferrugineus (Storer) under different photoperiods. Aquaculture. 31, 547 – 552.
Ruchin, A. B. (2020). Effect of illumination on fish and amphibian: development, growth, physiological and biochemical processes. Aquaculture, 13, 567–600. https://doi.org/10.1111/raq.12487
Silva-Garcia, A. J. (1996). Growth of Juvenile Gilthead Seabream (Sparus aurata L.) Reared Under Different Photoperiod Regimes. Israeli Journal of Aquaculture, 48, 84- 93.
Solbakken, J. S., & Pittman, K. (2004). Photoperiodic modulation of metamorphosis in Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture, 232, 613–625.
Tuckey, L. M., & Smith, T. I. J. (2001). Effects of photoperiod and substrate on larval development and substrate preference of juvenile Southern flounder, Paralichthys lethostigma. J. Appl. Aquaculture, 11, 1–20.
Veras, G. C., Paixão, D. J. M. R., Brabo, M. F., Soares, L. M. O., & Sales, A. D. (2016). Influence of photoperiod on growth, uniformity and survival of the larvae of the Amazonian ornamental Heros severus (Heckel, 1840). Revista Brasileira de Zootecnia, 45, 422–426
Villamizar, N., Blanco-Vives, B., Migaud, H., Davie, A., Carboni, S., & Sanchez-Vazquez, F. J. (2011). Effects of light during early larval development of some aquacultured teleosts: A review. Aquaculture, 315, 86–94.
Wei, H., Cai, W. J., Liu, H. K., Han, D., Zhu, X. M., Yang, Y. X., Jin, J. Y., & Xie, S. Q. (2019). Effects of photoperiod on growth, lipid metabolism and oxidative stress of juvenile gibel carp (Carassius auratus). J. Photochem. Photobiol. B: Biol., 198, Article 111552