The regularity index of zero-scheme fat points projective space P3
Main Article Content
Abstract
This paper computes the regularity index of a scheme Z = 3P1 + 2P2++2P6 the set of six fat points in projective space P3. With the method of evaluating the upper and lower bounds, it shows the value of the regularization index to be calculated. This result is presented in Theorem 3.4.
Keywords
Fat points, Hilbert funtion, projective space, scheme, the regularity index
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Catalisano, M. V., Trung, N. V., & Valla, G. (1993). “A sharp bound for the regularity index of fat points in general position”, Proc. Amer. Math. Soc. 118, 717-724. https://doi.org/10.1090/S0002-9939-1993-1146859-0.
Davis, E. D., & Geramita, A. V. (1984). The Hilbert function of a special class of 1-dimensional Cohen – Macaulay graded algebras, The Curves Seminar at Queen’s, Queen’s Paper in pure and Appl. Math. 67, 1-29.
Fatabbi, G., & Lorenzini, A. (2001). On the sharp bound for the regularity index for any set of fat points, J. Pure Apple. Algebra. 161, 91-111. https://doi.org/10.1016/S0022-4049(00)00083-9.
Nagel, U., & Trok, B. (2018). Segre’s regularity bound for fat points scheme, (accepted 30/3/2018 at Annali della Scuole Normale Superiore). https://doi.org/10.48550/arXiv.1611.06279.
Phan, V. T. (2000). Segre bound for the regularity index of fat points in , J. Pure and Appl. Algebra, 151, 197 – 214. https://doi.org/10.1016/S0022-4049(99)00055-9.
Phan, V. T. (2012). Regularity index of s+2 fat points not on a linear (s-1)-space, Comm. Algebra, 40, 3704 – 3715. https://doi.org/10.1080/00927872.2011.593385.
Phan, V. T., & Tran, N. S. (2017). On the regularity index of fat points not on a linear (r-1)-space, Comm. Algebra, 45, 4123-4138. https://doi.org/10.48550/arXiv.1604.06347.
Phan, V. T. & Tran, T. T. V. (2019). An estimate of the regularity index of fat points in some, Annales Univ. Sci. Budapest., Sect. Comp. 49, 399 – 410.
Segre, B. (1961). Alcune question su insiemi finiti di punti geometria algebrica, Atti. Convergno. Inern. di Torino, 15-33.