Investigation of the active compounds and biological activities of Pouzolzia zeylanica root cultivated in coastal sandy soil in Thanh Phu district, Ben Tre province

Nhut Pham Minh1,2, Tran Thuy Trang Ngo1, Nguyen Dung Phu Tuong2, Thi Diem Trang Mai3, Thanh Men Tran3,
1 Institute of Applied Sciences, Ho Chi Minh City University of Technology, Vietnam
2 Sand Sea Medicinal Materials Research Institute, Ssavigroup Corporation, Vietnam
3 College of Natural Sciences, Can Tho University, Can Tho City, Vietnam

Main Article Content

Abstract

Pouzolzia zeylanica is a medicinal plant widely cultivated in Vietnam, with its leaves traditionally used for therapeutic purposes. Interestingly, when grown using a specific cultivation method in the coastal sandy soils of Thanh Phu District, Ben Tre Province, the plant develops a tuber that resembles ginseng in appearance, color, and aroma. Nowadays, no studies have been reported either in Vietnam or internationally on this tuber, locally referred to Pouzolzia zeylanica. The objective of this study was to quantify the total contents of polyphenols, flavonoids, and saponins, and to evaluate key biological activities of the tuber, including antioxidant activities using three in vitro models (DPPH, ABTS, and ferric reducing antioxidant power), anti-inflammatory activity, and the inhibitory effects on α-amylase and α-glucosidase enzymes. Phytochemical analysis revealed that Pouzolzia zeylanica contains a high level of bioactive compounds, with total polyphenol content of 74,39 mg GAE/g extract, total flavonoid content of 28,96 mg QUE/g extract, and notably, total saponin content of 176,26 mg OA/g extract. Pouzolzia zeylanica exhibited significant antioxidant activity, with IC₅₀ values of 1,622 mg/mL (DPPH), 0,609 mg/mL (ABTS), and 0,32 mg/mL (ferric reducing power). It also demonstrated potent anti-inflammatory activity with an IC₅₀ of 0,024 mg/mL, and inhibitory effects against α-amylase and α-glucosidase with IC₅₀ values of 301,34 mg/mL and 107,15 mg/mL, respectively. These findings indicate that Pouzolzia zeylanica possesses promising biological activities and offers a valuable foundation for further pharmacological and phytochemical research.

Article Details

References

Anjali, V., Lavanya, V., Kumari, B. R., & Girish, C. (2018). Evaluation of phytochemical parameters of herbal formulation of Ficus benghalensis and Panax ginseng. International Journal of Health Sciences and Research, 8(1), 77-84.
Ánh, N. T. N., Thủy, Đ. T. T., & Hà, H. V. Hoạt tính chống oxi hóa đẳng sâm (Codonopsis pilosula Franch.) so sánh với một số dược thảo khác và axit ascobic. Tạp chí phân tích Hóa, Lý và Sinh học, 24(1), 16-20.
Bhalodia, N. R., Nariya, P. B., Acharya, R., & Shukla, V. (2013). In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. An international quarterly Journal of Research in Ayurveda, 34(2), 209-214. https://doi.org/10.4103/0974-8520.119684
Bhoomikapen, D.S., Zeel, M.S., Kumar, A.J., Parmar, S.C., Shaikh, A.I. & Aparnathi, K.D. (2018). Development of spectroscopic method for quantification of starch in milk. International Journal of Chemical Studies, 6(4), 53-57.
Chaves, N., Santiago, A., & Alías, J. C. (2020). Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants, 9(1), 76. https://doi.org/10.3390/antiox9010076
Chung, I.-M., Lim, J.-J., Ahn, M.-S., Jeong, H.-N., An, T.-J., & Kim, S.-H. (2016). Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. Journal of Ginseng Research, 40(1), 68-75. https://doi.org/10.1016/j.jgr.2015.05.006
Đỗ, T. L. (2005). Những cây thuốc và vị thuốc Việt Nam.
Ikewuchi, C., & Ikewuchi, C. (2011). Iodometric determination of the ascorbic acid (vitamin C) content of some fruits consumed in a university community in Nigeria. Global Journal of Pure and Applied Sciences, 17(1), 47-49.
Khanh, T. C. (2005). Access to medicinal plant resources in Vietnam-a fair and equitable sharing of benefits (การ เข้าถึง ทรัพยากร พืช สมุนไพร ใน เวียดนาม-การนำ ไป ใช้ ประ โย ช. The Thai Journal of Pharmaceutical Sciences, 29(1), 1-9. https://doi.org/10.56808/3027-7922.2224
Lam, H.-H., Dinh, T.-H., & Dang-Bao, T. (2021). Quantification of total sugars and reducing sugars of dragon fruit-derived sugar-samples by UV-Vis spectrophotometric method. IOP Conference Series: Earth and Environmental Science, 947(1), 1-6. https://doi.org/10.1088/1755-1315/947/1/012041
Le, V. A., E. Parks, S., H. Nguyen, M., & D. Roach, P. (2018). Improving the vanillin-sulphuric acid method for quantifying total saponins. Technologies, 6(3), 84. https://doi.org/10.3390/technologies6030084
Lê, V. T. T., Dung, N. T., Đại, T. Đ., & Hiền, N. T. (2022). Thành phần hoá học, hoạt tính kháng vi sinh vật kiểm định và hoạt tính chống oxy hóa của cây sâm cau (Curculigo orchioides) ở Tuyên Quang. TNU Journal of Science and Technology, 227(08), 527-533. https://doi.org/10.34238/tnu-jst.6022
Linh, T. C., Trang, Đ. T. X., Huân, P. K. N., Anh, V. T., Danh, L. T., & Mến, T. T. (2020). Khảo sát hoạt tính sinh học của cao chiết từ rễ cây cò sen (Miliusa velutina). Hội nghị công nghệ sinh học toàn quốc 2020, 225-231.
Malathy, R., Prabakaran, M., Kalaiselvi, K., Chung, I.-M., & Kim, S.-H. (2020). Comparative polyphenol composition, antioxidant and anticorrosion properties in various parts of Panax ginseng extracted in different solvents. Applied Sciences, 11(1), 93. https://doi.org/10.3390/app11010093
Mến, T. T., Anh, N. T. H., Phiến, H. H., Yến, H. K., Trang, Đ. T. X., & Tuân, N. T. (2020). Hoạt tính kháng oxy hóa của cao chiết từ thân rễ cây thiền liền (Kaempferia galanga L.). Tạp chí Khoa học Đại học Cần Thơ, 56, 41-47. https://doi.org/10.22144/ctu.jsi.2020.110
Narayanan, M., Gnanasekaran, C., Palanisamy, B., Govindan, R., Chelliah, C. K., Govindan, R., Thavamurugan, S., & Natesan, M. (2024). Coastal sand dune plants as a valuable resource of bioactive metabolites in pharmaceutical field. In Reference series in phytochemistry, 1-23. https://doi.org/10.1007/978-3-031-30037-0_55-1
Nguyen, H. T., Vu-Huynh, K. L., Nguyen, H. M., Le, H. T., Van Le, T. H., Park, J. H., & Nguyen, M. D. (2021). Evaluation of the saponin content in Panax vietnamensis acclimatized to Lam Dong Province by HPLC–UV/CAD. Molecules, 26(17), 5373. https://doi.org/10.3390/molecules26175373
Nhut, P. M., Ai, N. X. M., & Thao, D. T. P. (2017). Anti-diarrheal evaluation of Medinilla septentrionalis. International Journal of Life- Sciences Scientific Research, 3(1), 832-837. https://doi.org/10.21276/ijlssr.2017.3.1.14
Ranaweera, C., Senadeera, S., Peiris, S., & Fernando, K. (2023). Evaluation of in vitro anti-inflammatory and antibacterial properties of tuberous roots of Mirabilis jalapa (Sinhala name: Hendirikka).
Roy, A., & Geetha, R. V. (2013). Invitro α-amylase and α-glucosidase inhibitory activities of the ethanolic extract of Dioscorea villosa tubers. ResearchGate, 4(4), 49-54.
Sheliya, M., Begum, R., Pillai, K., Aeri, V., Mir, S., Ali, A., & Sharma, M. (2016). In vitro a-glucosidase and a-amylase inhibition by aqueous, hydroalcoholic, and alcoholic extract of Euphorbia hirta L. Drug Development and Therapeutics, 7(1), 26-26.
Shetty, N., Harika, V., & Lokras, S. (2020). Antioxidant activity and total phenol and flavonoids analysis of siberian ginseng root. International Journal of Current Pharmaceutical Research, 38–40. https://doi.org/10.22159/ijcpr.2020v12i1.36830
So, S.-H., Lee, J. W., Kim, Y.-S., Hyun, S. H., & Han, C.-K. (2018). Red ginseng monograph. Journal of Ginseng Research, 42(4), 549-561. https://doi.org/10.1016/j.jgr.2018.05.002
Soyuçok, A., Kılıç, B., & Başyiğit Kılıç, G. (2024). Assessment of in vitro antioxidant capacity of ginseng extract and its effect on inhibiting lipid oxidation and physicochemical properties of cooked ground beef during refrigerated storage. Food Technology and Biotechnology, 62(2), 140-149. https://doi.org/10.17113/ftb.62.02.24.8244
Tiêu chuẩn quốc gia, TCVN 10791:2015. Malt - xác định hàm lượng nitơ tổng số và tính hàm lượng protein thô - phương pháp Kjeldahl.
Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093
Wickramaratne, M. N., Punchihewa, J., & Wickramaratne, D. (2016). In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC complementary and alternative medicine, 16, 1-5. https://doi.org/10.1186/s12906-016-1452-y
Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940-949. https://doi.org/10.1016/j.foodchem.2007.04.038
Yadav, R., & Mahalwal, V. S. (2018). In-vitro anti-inflammatory activity of oral poly herbal formulations. The Pharma Innovation Journal, 7(2), 272-276.