Application of Box–Behnken designs (BBD) in the synthesis of drug carriers - nano silica

Thi Ngoc Tram Nguyen1, , Ngoc Huyen Nguyen Thi2
1 Tra Vinh University, Tra Vinh province, Vietnam
2 School of Pharmacy, College of Medicine and Pharmacy, Tra Vinh University, Vietnam

Main Article Content

Abstract

Nowadays, the use of nanoparticles as "carriers" to deliver drugs to the correct location has attracted the attention of scientists. In particular, particle size is a critical factor affecting nanoparticles' ability to carry and release drugs. In this study, silica nanoparticles were synthesized by the Stober method combined with Box–Behnken designs (BBD). The resulting silica nanoparticles have sizes consistent with the predicted values, demonstrating the reliability of the proposed model. The study contributes to the development of promising materials for drug delivery systems.

Article Details

References

Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019.
Bogush, G., Tracy, M., & Zukoski Iv, C. (1988). Preparation of monodisperse silica particles: control of size and mass fraction. Journal of Non-Crystalline Solids, 104(1), 95-106. https://doi.org/10.1016/0022-3093(88)90187-1.
Bruns, R. E., Scarminio, I. S., & de Barros Neto, B. (2006). Statistical design-chemometrics (Vol. 25). Elsevier.
Cho, K., Wang, X., Nie, S., & Shin, D. M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 14(5), 1310-1316. https://clincancerres.aacrjournals.org/content/clincanres/14/5/1310.full.pdf
Colilla, M., González, B., & Vallet-Regí, M. (2013). Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomaterials Science, 1(2), 114-134. https://pubs.rsc.org/en/content/articlelanding/2013/BM/C2BM00085G
Gilmour, S. G. (2006). Response surface designs for experiments in bioprocessing. Biometrics, 62(2), 323-331. https://doi.org/10.1111/j.1541-0420.2005.00444.x
Kumari, P., Ghosh, B., & Biswas, S. (2016). Nanocarriers for cancer-targeted drug delivery. Journal of drug targeting, 24(3), 179-191. https://doi.org/10.3109/1061186x.2015.1051049.
Lu, F., Wu, S. H., Hung, Y., & Mou, C. Y. (2009). Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small, 5(12), 1408-1413. https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.200900005
Nguyen-Thi, N.-T., Pham Tran, L. P., Le, N. T. T., Cao, M.-T., Tran, T.-N., Nguyen, N. T., Nguyen, C. H., Nguyen, D.-H., Than, V. T., & Le, Q. T. (2019). The engineering of porous silica and hollow silica nanoparticles to enhance drug-loading capacity. Processes, 7(11), 805. https://doi.org/10.3390/pr7110805
Nguyen, T. N. T., Nguyen-Tran, D.-H., Bach, L. G., Du Truong, T. H., Le, N. T. T., & Nguyen, D. H. (2019). Surface PEGylation of hollow mesoporous silica nanoparticles via aminated intermediate. Progress in Natural Science: Materials International, 29(6), 612-616. https://doi.org/10.3390/pr7110805.
Rahman, I., Vejayakumaran, P., Sipaut, C., Ismail, J., Bakar, M. A., Adnan, R., & Chee, C. (2007). An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294(1-3), 102-110. https://doi.org/10.1016/j.colsurfa.2006.08.001.
Rao, K. S., El-Hami, K., Kodaki, T., Matsushige, K., & Makino, K. (2005). A novel method for synthesis of silica nanoparticles. Journal of Colloid and Interface Science, 289(1), 125-131. https://doi.org/10.1016/j.jcis.2005.02.019.
Singh, P., Srivastava, S., & Singh, S. K. (2019). Nanosilica: Recent progress in synthesis, functionalization, biocompatibility, and biomedical applications. ACS Biomaterials Science & Engineering, 5(10), 4882-4898. https://doi.org/10.1021/acsbiomaterials.9b00464.
Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62-69. https://doi.org/10.1016/0021-9797(68)90272-5.
Tang, L., Fan, T. M., Borst, L. B., & Cheng, J. (2012). Synthesis and biological response of size-specific, monodisperse drug–silica nanoconjugates. ACS nano, 6(5), 3954-3966. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3555148/pdf/nihms372943.pdf
Tram, N. T. N., & Huyen, N. T. N. (2024). Factors affecting the morphology and size of silica nanoparticles as drug delivery for cancer treatment. Dong Thap University Journal of Science, 14(5), 88-97. https://doi.org/10.52714/dthu.14.5.2025.1530.