Synchronization on the network of two Fitzhugh-Nagumo systems with the effect of the external electrical stimulation

Long Van Em Phan1
1 An Giang University

Main Article Content

Abstract

This paper investigates both necessary and sufficient conditions of the coupling strength in order to cause the synchronization of two interacting FitzHugh-Nagumo systems (FHN) with the effect of one parameter, namely the frequency of the external electrical stimulation. The Lyapunov function method is used to identify the sufficient condition, while the largest transverse Lyapunov exponent helps to find out the necessary condition of the coupling strength. The result shows that the synchronization occurs when the coupling strength is large enough. Moreover, the numerical results are presented to test the theoretical one.

Article Details

References

[1]. Braun, H. A., Wissing, H., Schäfer, K., & Hirsch, M. C. (1994), “Oscillation and noise determine signal transduction in shark multimodel sensory cells”, Nature, (Vol. 367), pp. 270-273.
[2]. Fitzhugh, R. (1960), “Thresholds and plateaus in the Hodgkin–Huxley nerve equations”, J. Gen. Physiol., (Vol. 43), pp. 867-896.
[3]. Heagy, J. F., Carroll, T. L., & Pecora, L. M. (1995), “Desynchronization by periodic orbits”, Phys. Rev. E., (Vol. 52), pp. 1253-1256.
[4]. Hodgkin, A. L., & Huxley, A. F. (1952), “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., (Vol. 117), pp. 500-544.
[5]. Khalil, H. K. (2002), Nonlinear Systems, third ed., Prentice Hall, New York.
[6]. Kostova, T., Ravindran, R., Schonbek, M. (2004), “FitzHugh–Nagumo revisited: types of bifurcations, periodical forcing and stability regions by a Lyapunov functional”, Int. J. Bifurcat.
Chaos 14, (Vol. 3), pp. 913-925.
[7]. Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962), “An active pulse transmission line simulating nerve axon”, Proc. IRE., (Vol. 50), pp. 2061-2070.
[8]. Pecora, L. M., & Carroll, T. L. (1998), “Master stability functions for synchronized coupled systems”, Phys. Rev. Lett., (Vol. 80), pp. 2109-2112.
[9]. Yanchuk, S., Maistrenko, Y., Lading, B., & Mosekilde, E. (2000), “Effects of a parameter mismatch on the synchronization of two coupled chaotic oscillators”, Int. J. Bifurcat. Chaos, (Vol. 10), pp. 2629-2648.
[10]. Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985), “Determining Lyapunov exponents from a time series”, Physica D., (Vol. 16), pp. 285-317.