The effect of ultrasonic waves on antibacterial activities of Imperata cylindrica rhizome and leaf extracts
Main Article Content
Abstract
Both leaf and rhizome extracts from Imperata cylindrica investigated contain phenols and tannins, flavonoids, quinones, coumarins, alkaloids, terpenoids and saponins. The ultrasound-assisted extractions such as RM96S, LM96S and RE96S are found to resist E. coli and B. subtilis better than those without ultrasounds. The minimum inhibitory concentration (MIC) of the RM96S extract against E. coli and B. subtilis, respectively is 50 and 75 mg/ml; the minimum bactericidal concentration (MBC) respectively is 75 and 100 mg/ml; the median inhibitory concentration (IC50) respectively is 16.4 and 21.1 mg/ml. Ultrasound-assisted extraction is an effective method to optimize the extraction of antibacterial compounds.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Antibacterial activity, Imperata cylindric, ultrasonic-assisted extraction
References
[2]. Mounyr Balouirin, Moulay Sadiki, Saad Koraichi Ibnsouda (2016), “Methods forin vitro evaluating antimicrobial activity: A review”, Journal of Pharmaceutical Analysis, (6), p. 71-79.
[3]. S. Chunlaratthanaphorn, N. Lertprasertsuke, U. Srisawat, A. Thuppia, A. Ngamjariyawat, N. Suwan-likhid and K. Jaijoy (2007), “Acute and subchronic toxicity study of the water extract from root of Imperata cylindrica (Linn.) Raeusch. in rats”, Songklanakarin J. Sci. Technol., (29), p. 141-155.
[4]. R. Croteau, T. M. Kutchan and N.G. Lewis (2000), “Natural Products (Secondary Metabolites)”, Biochemistry & Molecular Biology of Plants, American Society of Plant Physiologists, p. 1250-1318.
[5]. A. F. H. Ismail, O. A. B. D. Samah and A. Sule (2011), “A Preliminary study on antimicrobial activity of Imperata cylindrica”, Borneo J. Resour. Sci. Tech., (1), p. 63-66.
[6]. Z. S. Khan and S. Nasreen (2010), “Phytochemical analysis, antifungal activity and mode of action of methanol extracts from plants against pathogens”, Journal of Agricultural Technology, (6), p. 793-805.
[7]. J. H. Miller (1972), “Experiments in molecular genetics”, Cold Spring Harbor Laboratory, p. 433.
[8]. V. Parkavi, M. Vignesh, K. Selvakumar, J. M. Mohamed, J. J. Ruby (2012), “Antibacterial Activity of Aerial Parts of Imperata cylindrica (L) Beauv.” International Journal of Pharmaceutical Sciences and Drug Research, (4), p. 209-212.
[9]. J. H. Park (2004), “Medicinal plants of Korea”, Shinil Publishing Co., p. 101.
[10]. L. Rong-hua, C. S. Sheng, R. G. Gang, S. Feng and H. H. Lian (2013), “Phenolic Compounds from Roots of Imperata cylindrica var. major”, Chinese Herbal Medicines, (5), p. 240-243.
[11]. L. Rufo, A. Franco and V. D. L. Fuente (2013), “Silicon in Imperata cylindrica (L.) P. Beauv: content, distribution, and ultrastructure”, Protoplasma, (251), p. 921-930.
[12]. A. Sofowora (1993), Screening Plants for Bioactive Agents. In: Medicinal Plants and Traditional Medicinal in Africa, seconded., Spectrum Books Ltd., Sunshine House, Ibadan, Nigeria, p. 134-156.
[13]. A. Termentzi, N. Fokialakis N, A. L. Skaltsounis (2011), “Natural resins and bioactive natural products thereof as protential antimicrobial agents”, Curr Pharm Des, (17), p. 1267-1290.
[14]. N. Theis, M. Lerdau (2003), “The evolution of function in plant secondary metabolites”, Int. J. Plant Sci., (164), S93-S102.
[15]. P. Tiwari, B. Kumar, M. Kaur, G. Kaur, H. Kaur (2011), Phytochemical screening and extraction: A review”, Internationale Pharmaceutica Sciencia, (1), p. 98-106.
[16]. Y. L. Yin, Z. Y. Deng, H. L. Huang, T. J. Li, H. Y. Zhong (2004), “The effect of arabinoxylanase and protease supplementation on nutritional value of diets containing wheat bran or rice bran in growing pig”, J. Anim. Feed Sci., (13), p. 445-461.