Mô phỏng quá trình chuyển pha cấu trúc trong kim loại niken

Van Duc Le, Huu Kien Pham, Khac Hung Pham

Main Article Content

Abstract

In this paper, we present the molecular dynamics simulation results of structural phase transition in nickel (Ni) with the binary interaction of Pak-Doyama. This transition is analyzed with the radial distribution function of coordinated numeral distribution and that of Wendt-Abraham ratio gmin/gmax in accordance with the temperature and edge-length distribution of simplexes. The simulation result reveals that the temperature change from the liquid to the amorphous is Tg = 810 K. It shows the structural phase transition from liquid to amorphous is the result of distorting those standard simplexes found in the liquid phase.   

Article Details

References

[1]. F. J. Cherne, P. A. Deymier (2001), “Calculation of the transport properties of liquid alumi- num with equilibrium and non-equilibrium molecular dynamics”, Scripta materialia, (45), pp. 985-991.
[2]. T. Egami and Y. Waseda (1984), “Atomic size effect on the formability of metallic glasses”, J. Non-Cryst. Solids, (64), pp. 113-134.
[3]. Vo Van Hoang, Nguyen Hung Cuong (2006), “Local icosahedral order and thermody- namics of simulated amorphous Fe”, Physica B, (404), pp. 340-346.
[4]. Vo Van Hoang, Takashi Odagaki (2010), “Glass Formation and Crystallization of a Simple Monatomic Liquid”, The journal of physical chemistry B, (20), (11page).
[5]. P. K. Hung and P. H. Kien (2010), “New model for tracer-diffusion in amorphous solid”,
European Physical Journal B, (78), pp. 119-125.
[6] . P. K. Hung, P. H. Kien and L. T. Vinh (2010), “Evidence of 'microscopic bubbles' and a new diffusion mechanism for amorphous”, J. Phys.: Condens. Matter, (22), 035401 (5 page).
[7]. P. H. Kien and P. K. Hung (2013), “The structural and dynamics properties of cobalt mater under temperature”, Moder Physics Letter B, (30), 13502230 (10 page).
[8]. R. S. Liu, D. W. Qi and S. Wang (1991), “Subpeaks of structure factors for rapidly quenched metals”, Physical Review B, (45), pp. 451-456.
[9]. J. M. Lopez and M. Silbert (1989), “Structural diffusion model calculations of the pair distribution function of aluminum: From the liquid to the amorphous phase”, Solid State Commu- nications, (69), pp. 585-587.
[10]. S. K. Nayak, et al. (1998), “Thermodynamics of small nickel clusters”, Journal of Physics Condensed Matter, (10), pp. 10853-10862.
[11]. S. Ozgen, E. Duruk (2004), “Molecular dynamics simulation of solidification kinetics of aluminum using SuttonChen version of EAM”, Mater. Lett., (58), pp. 1071-1075.
[12]. A. Sarkar, P. Barat and P. Mukherjee (2008), “Molecular dynamics simulation of rapid solidification of Aluminum under pressure”, International Journal of Modern Physics B, (22), pp. 2781-2785.
[13]. S. Solhjoo, A. Simchi and H. Aashuri (2012), “Molecular dynamics simulation of melt- ing, solidification and remelting processes of aluminum”, Transaction of Mechanical Engineer- ing, (36), pp. 13-23.
[14]. Y. Waseda (1981), “The structure of liquids, amorphous solids and solid fast ion conductors”, Progress in Materials Science, (26), pp. 1-26.
[15]. A. Zhu, G. J. Shiflet, S. J. Poon (2008), “Diffusion in metallic glasses: analysis from the atomic bond defect perspective”, Acta Materialia, (56), pp. 3550-3556.