Magnetic Fe2O3/biochar composite prepared by hydrothermal method for Cu2+ removal in water
Main Article Content
Abstract
In this study, pureed water caltrop shell is used as the raw, and magnetic biochar composite is prepared by co-hydrothermal of water chestnut Trapa and FeCl3.6H2O. XRD, EDX, SEM, FT-IR, N2-isothermal adsorption and desorption, and scanning electron microscope (SEM) techniques showed the successful synthesis of Fe2O3/Biochar composite. Synthesizing the material by hydrothermal method created Fe2O3 to cover the biochar surface. The presence of Fe2O3 has significantly increased the surface area of the magnetic biochar material, which is conducive to the recycling of biochar. Cu2+ removal efficiency reached 89,96% at concentration of 50mg/L and pH 6. The Cu2+ adsorption process follows the Langmuir isotherm adsorption model and the second-order kinetic model. The results show that this low-cost magnetic biochar is capable of removing Cu2+ from aqueous solution quickly and effectively.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Cu2 , Fe2O3/biochar, magnetic biochar, water chestnut Trapa
References
Đặng, K. T., & Vũ, X. H. (2020). Điều chế tro trấu biến tính ứng dụng xử lý Cu2+ trong nước. Tạp chí Khoa học và Công nghệ Việt Nam, 62(1), 66-69.
Hân, N. (05-5-2021). Thực trạng và giải pháp bảo vệ môi trường các khu công nghiệp. Truy cập từ https://www.tapchicongsan.org.vn.
Jain, C. K., Malik, D. S. and A. K. Yadav (2016). Applicability of plant based biosorbents in the removal of heavy metals: a review. Environmental Processes, 3 (2), 495–523. DOI: 10.1007/s40710-016-0143-5.
Lê, T. X. T., Hồ, H. Q., & Nguyễn, T. S. M. (2017). Xử lý Cu2+ và Zn2+ trong nước thải xi mạ bằng phương pháp tách từ tính. Tạp chí Phát triển Khoa học & Công nghệ, 1(3), 47-54. https://doi.org/10.32508/stdjns.v1iT3.465.
Liang, H., Zhu, C., Ji, S., Kannan, P., & Chen, F. (2022). Magnetic Fe2O3/biochar composite prepared in a molten salt medium for antibiotic removal in water. Biochar, 4(1), 3. https://doi.org/10.1007/s42773-021-00130-1.
Li, X., Wang, C., Zhang, J., Liu, J., Liu, B., & Chen, G. (2020). Preparation and application of magnetic biochar in water treatment: A critical review. Science of The Total Environment, 711, 134847. https://doi.org/10.1016/j.scitotenv.2019.134847.
Musztyfaga, E., Kabała, C., Agata, B. A., Cuske, M. and Gałka B. (2014). Soil pollution with copper, lead and zinc in the surroundings of large copper ore tailings impoundment. Published Online, 25(4), 45 – 49.
https://doi.org/10.2478/oszn-2014-0027.
Qin, W., Yang, C., Yi, R., & Gao, G. (2011). Hydrothermal synthesis and characterization of single-crystalline α-Fe2O3 nanocubes. Journal of Nanomaterials, 2011, 1-5. https://doi.org/10.1155/2011/159259.
Rajendran, M., Shi, L., Wu, C., Li, W., An, W., Liu, Z.,& Xue, S. (2019). Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil–rice system. Chemosphere, 222, 314-322. https://doi.org/10.1016/j.chemosphere.2019.01.149.
Shan, D., Deng, S., Zhao, T., Wang, B., Wang, Y., Huang, J., Yu, G., Winglee, J., & Wiesner, M. R. (2016). Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials, 305, 156-163. https://doi.org/10.1016/j.jhazmat.2015.11.047.
Trần, Đ. T., & Nguyễn, T. H. P. (2019). Nghiên cứu tổng hợp vật liệu biochar từ tính và ứng dụng để xử lý xanh methylen trong nước. VNU Journal of Science: Natural Sciences and Technology, 36(1), 9-19. https://doi.org/10.25073/2588-1140/vnunst.4939.
Trần, M. L., & Lê, T. H. D. (2012). Nghiên cứu khả năng hấp phụ các ion Cu(II), Zn(II), Pb(II) của than bùn hoạt hóa bằng dung dịch HCl. Tạp chí Khoa học Xã hội Nhân văn và Giáo dục, 2(4), 28-34.
Thines, K. R., Abdullah, E. C., Mubarak, N. M., & Ruthiraan, M. (2017). Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: a review. Renewable and Sustainable Energy Reviews, 67, 257-276. https://doi.org/10.1016/j.rser.2016.09.057.
Trần, T. N. N. (2013). Nghiên cứu khả năng hấp phụ ion Pb2+, Cu2+ trên vật liệu hấp phụ chế tạo từ bã đậu nành. Luận văn thạc sĩ. Trường Đại học Đà Nẵng. Đà Nẵng.
Xu, H., Zhang, X., & Zhang, Y. (2017). Modification of biochar by Fe2O3 for the removal of pyridine and quinoline. Environmental Technology, 39(11), 1470-1480. https://doi.org/10.1080/09593330.2017.1332103.
Wang, X., Ma, S., Wang, X., Cheng, T., Dong, J., & Feng, K. (2022). The mechanism of Cu2+ sorption by rice straw biochar and its sorption–desorption capacity to Cu2+ in soil. Bulletin of Environmental Contamination and Toxicology, 109(3), 562-570.
Zhang, Y. R., Wang, S. Q., Shen, S. L., & Zhao, B. X. (2013). A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chemical Engineering Journal, 233, 258-264. https://doi.org/10.1016/j.cej.2013.07.009.
Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., & Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 130, 457-462. https://doi.org/10.1016/j.biortech.2012.11.132.
Zhou, J., Zhang, S., Zhou, Y. N., Tang, W., Yang, J., Peng, C., & Guo, Z. (2021). Biomass-derived carbon materials for high-performance supercapacitors: current status and perspective. Electrochemical Energy Reviews, 4, 219-248. https://doi.org/10.1007/s41918-020-00090-3.
Most read articles by the same author(s)
- Kim Tai Dang, Nghiên cứu xác định iot trong rong biển bằng phương pháp chiết-trắc quang , Dong Thap University Journal of Science: No. 9 (2014): Part B - Natural Sciences