Two-photon absorbtion in quantum dot with Yukawa potential

Thái Thai1, Bich Thao Nguyen1, Van Cong Nguyen1, Vinh Phuc Huynh2,
1 Student, Faculty of Natural Sciences Teacher Education, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam
2 Faculty of Natural Sciences Teacher Education, School of Education, Dong Thap University, Cao Lanh 870000, Vietnam

Main Article Content

Abstract

We study the nonlinear optical absorption properties of Yukawa potential quantum dots, especially focusing on the phenomenon of two-photon absorption (TPA) and using GaAs as illustrative material. The research results show a clear difference between intra-band and inter-band transitions: the intra-transitions have a narrower TPA spectrum and a higher maximum value because the transition energy has a smaller value compared to interregional one. Notably, the peak corresponding to   is always located to the left of the peak corresponding to . Furthermore, the absorption peak position shows a different dependence on the displacement order, n, for intra- and inter-transitions. We also observe a blue-shift trend in the TPA spectrum with increasing values of both parameters  and  . These findings hold important promise for the development of improved photonic devices by optimizing the material properties of quantum dots.

Article Details

References

Bylicki, M., Stachów, A., Karwowski, J., & Mukherjee, P. K. (2007). The resonance levels of the Yukawa potential. Chemical Physics, 331(2), 346-350. https://doi.org/https://doi.org/10.1016/j.chemphys.2006.11.003
Fedorov, A. V., Baranov, A. V., & Inoue, K. (1996). Two-photon transitions in systems with semiconductor quantum dots. Physical Review B, 54(12), 8627-8632. https://doi.org/10.1103/PhysRevB.54.8627
Gong, R., Zhou, C., & Feng, X. (2022). Magnetic field dependent two-photon absorption properties in monolayer MoS2. Physical Review B, 105(19), 195301. https://doi.org/10.1103/PhysRevB.105.195301
Greene, R. L., & Aldrich, C. (1976). Variational wave functions for a screened Coulomb potential. Physical Review A, 14(6), 2363-2366. https://doi.org/10.1103/PhysRevA.14.2363
Hamzavi, M., Ikhdair, S. M., & Thylwe, K. E. (2013). Equivalence of the empirical shifted Deng–Fan oscillator potential for diatomic molecules. Journal of Mathematical Chemistry, 51(1), 227-238. https://doi.org/10.1007/s10910-012-0075-x
Hamzavi, M., Movahedi, M., Thylwe, K.-E., & Rajabi, A. A. (2012). Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta. Chinese Physics Letters, 29(8), 080302. https://doi.org/10.1088/0256-307X/29/8/080302
Hamzavi, M., Thylwe, K. E., & Rajabi, A. A. (2013). Approximate Bound States Solution of the Hellmann Potential. Communications in Theoretical Physics, 60(1), 1. https://doi.org/10.1088/0253-6102/60/1/01
Li, E. H. (2000). Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures. Physica E: Low-dimensional Systems and Nanostructures, 5(4), 215-273. https://doi.org/https://doi.org/10.1016/S1386-9477(99)00262-3
Nasa, S., & Purohit, S. P. (2020). Linear and third order nonlinear optical properties of GaAs quantum dot in terahertz region. Physica E: Low-dimensional Systems and Nanostructures, 118, 113913. https://doi.org/https://doi.org/10.1016/j.physe.2019.113913
Nathan, V., Guenther, A. H., & Mitra, S. S. (1985). Review of multiphoton absorption in crystalline solids. Journal of the Optical Society of America B, 2(2), 294-316. https://doi.org/10.1364/JOSAB.2.000294
Nguyen, C. V., Hieu, N. N., Poklonski, N. A., Ilyasov, V. V., Dinh, L., Phong, T. C., . . . Phuc, H. V. (2017). Magneto-optical transport properties of monolayer MoS2 on polar substrates. Physical Review B, 96(12), 125411. https://doi.org/10.1103/PhysRevB.96.125411
Nikivorof, A. F., & Uvarov, V. B. (1988). Special Functions of Mathematical. Physics–A Unified Introduction with Applications. In: Basel, Birkhäuser.
Phuc, H. V. (2023). Two-photon magneto-optical transitions in quantum rings. Journal of Applied Physics, 133(7). https://doi.org/10.1063/5.0138500
Tezcan, C., & Sever, R. (2009). A General Approach for the Exact Solution of the Schrödinger Equation. International Journal of Theoretical Physics, 48(2), 337-350. https://doi.org/10.1007/s10773-008-9806-y
Tung, L. V., Vinh, P. T., & Phuc, H. V. (2018). Magneto-optical properties of semi-parabolic plus semi-inverse squared quantum wells. Physica B: Condensed Matter, 539, 117-122. https://doi.org/https://doi.org/10.1016/j.physb.2018.04.015
Yukawa, H. (1935). On the Interaction of Elementary Particles. I. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 17, 48-57. https://doi.org/10.11429/ppmsj1919.17.0_48