Dirac electron in gapped graphene under exponentially decaying magnetic field

Le Thi Hoa1, Tran Ngoc Bich1, Nguyen Ngoc Hieu2,3, Le Thi Ngoc Tu4, Huynh Vinh Phuc4,
1 Physics Department, University of Education, Hue University, Vietnam
2 Institute of Research and Development, Duy Tan University, Vietnam
3 Faculty of Natural Sciences, Duy Tan University, Vietnam
4 Faculty of Natural SciencesTeacher Education, Dong Thap University, Vietnam

Nội dung chính của bài viết

Tóm tắt

In this work, we present a Dirac electron in gapped graphene under the exponentially decaying magnetic field. Solving Dirac-Weyl equations, we obtain exact expressions of the eigenfunctions and their corresponding eigenvalues. The probability density and current distributions are also investigated in detail. The results are compared to those in the gapless graphene as well as in the gapped graphene in the presence of a uniform magnetic field.

Chi tiết bài viết

Tài liệu tham khảo

Cooper, F., Khare, A., & Sukhatme, U. (1995). Supersymmetry and quantum mechanics. Physics Reports, 251(5-6), 267-385.
Eshghi, M., & Mehraban, H. (2017). Exact solution of the Dirac–Weyl equation in graphene under electric and magnetic fields. Comptes Rendus Physique, 18(1), 47-56.
Ghosh, T. K. (2008). Exact solutions for a Dirac electron in an exponentially decaying magnetic field. Journal of Physics: Condensed Matter, 21(4), 045505.
Handrich, K. (2005). Quantum mechanical magnetic-field-gradient drift velocity: An analytically solvable model. Physical Review B, 72(16), 161308.
Jiang, L., Zheng, Y., Li, H., & Shen, H. (2010). Magneto-transport properties of gapped graphene. Nanotechnology, 21(14), 145703.
Krstajić, P., & Vasilopoulos, P. (2012). Integer quantum Hall effect in gapped single-layer graphene. Physical Review B, 86(11), 115432.
Kuru, Ş., Negro, J., & Nieto, L. (2009). Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields. Journal of Physics: Condensed Matter, 21(45), 455305.
Midya, B., & Fernandez, D. J. (2014). Dirac electron in graphene under supersymmetry generated magnetic fields. Journal of Physics A: Mathematical and Theoretical, 47(28), 285302.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I., Dubonos, S., Firsov., , & AA (2005). Two- dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197-200.
Novoselov, K. S., Jiang, D., Schedin, F., Booth, T., Khotkevich, V., Morozov, S., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102(30), 10451-10453.
Wang, D., & Jin, G. (2013). Effect of a nonuniform magnetic field on the Landau states in a biased AA-stacked graphene bilayer. Physics Letters A, 377(40), 2901-2904.
Wang, D., Shen, A., Lv, J.-P., & Jin, G. (2019). Unique Landau-level structure of monolayer black phosphorus under an exponentially decaying magnetic field. Journal of Physics: Condensed Matter, 32(9), 095301.