Isolation of toxic bacteria for the Drosophila melanogaster fruit fly model

Thuy Quynh Tran1, Phat Tai Vo2, Thi Kim Tu La2, Tuong Quyen Nguyen3, Duc Thai Vo4, Thanh Men Tran2,
1 Institute of Biotechnology and Food Technology, Can Tho University, Vietnam
2 College of Natural Sciences, Can Tho University, Vietnam
3 Vinh Kim High School, Chau Thanh district, Tien Giang province, Vietnam
4 Center for Information and Application of Science and Technology - Hau Giang province, Vietnam

Main Article Content

Abstract

The development of clean and green agriculture, aimed at promoting sustainable farming worldwide, increasingly focuses on finding new, safe insect-resistant materials. This is particularly important in light of growing concerns about pest resistance to pesticides, which has become more prevalent due to climate change and natural selection from native bacterial strains. In a study conducted in Vinh Long and Hau Giang provinces, 55 bacterial strains were isolated from garden soil and insect samples, all capable of thriving in LB (Luria-Bertani) medium. The collection included 31 Gram-positive bacteria and 24 Gram-negative bacteria. Toxicity tests revealed that the centrifuged solution of two bacterial strains, I3 and I4, along with the cells of two others, MT1 and MT2, demonstrated effective insecticidal properties. Moreover, the centrifuged solution of I4, the bacterial cells of MT2, and a combination of both sources were found to kill insects effectively after a 7-day period. Additionally, bacterial growth was influenced by incubation time and pH levels, with I4 showing a steady increase in optical density from pH 5 to pH 7, while MT2 showed a decrease. Both strains exhibited the highest biomass at 48 hours of incubation. Based on 16S-rRNA sequencing and biochemical analysis, the bacterial strains MT2 and I4 were identified as Bacillus subtilis and Proteus mirabilis, respectively, and classified as Bacillus sp. MT2 and Proteus sp. I4.

Article Details

References

Afriani, S. R., Pujiastuti, Y., Irsan, C., Damiri, N., Nugraha, S., & Sembiring, E. R. (2018). Isolation and toxicity test of Bacillus thuringiensis from Sekayu region soil, South Sumatra on Spodopteralitura. In IOP Conference Series: Earth and Environmental Science (Vol. 102, No. 1, p. 012066).
Álvarez-Lagazzi, A. P., Cabrera, N., Francis, F., & Ramírez, C. C. (2021). Bacillus subtilis (Bacillales, Bacillaceae) spores affect survival and population growth in the grain aphid Sitobion avenae (Hemiptera, Aphididae) in relation to the presence of the facultative bacterial endosymbiont Regiella insecticola (Enterobacteriales, Enterobacteriaceae). Journal of economic entomology, 114(5), 2043-2050.
Blazej, R. G., Kumaresan, P., & Mathies, R. A. (2006). Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proceedings of the National Academy of Sciences, 103(19), 7240-7245.
Çelik, T., & Sevim, A. (2022). Bacterial pathogens from Diprion pini L.(Hymenoptera: Diprionidae) and their biocontrol potential. Biologia, 77(10), 3001-3013.
Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and environmental microbiology, 74(8), 2461-2470.
Harba, M., Idris, I., & Ismail, H. (2022). Toxicological and molecular characterization of local Bacillus thuringiensis isolates from soil and insects. Journal of Agroalimentary Processes and Technologies, 28(3), 226-232.
Harley, J. P., Klein, D. A., & Prescott, L. M. (2005). Microbiology. McGraw-Hill Higher Education.
Huang, S., Li, X., Li, G., & Jin, D. (2018). Effect of Bacillus thuringiensis CAB109 on the growth, development, and generation mortality of Spodoptera exigua (Hübner)(Lepidoptera: noctuidea). Egyptian Journal of Biological Pest Control, 28, 1-5.
Kelly, B. A. (2024). Insecticidal potency of entomopathogenic bacterium Bacillus subtilis on cockroach (Periplaneta americana). International Journal of Science and Research Archive, 12(1), 934-939.
Long, P. D., Hung, T. X., Hang, H. T., Tai, D. T., Van Phuc, P., Long, B. D., & Chi, N. M. (2023). Entomopathogenic bacterium Serratia marcescens isolated from episparis tortuosalis causing a damage to chukrasia tabularis in Vietnam. Journal of Forestry Science and Technology, (15), 100-107.
Nguyễn, V. T. (2006). Nghiên cứu sản xuất sử dụng thuốc sâu sinh học đa chức năng cho một số loại cây trồng bằng kỹ thuật công nghệ sinh học. Báo cáo kết quả đề tài nghiên cứu khoa học cấp Nhà nước KC.04.12, Viện Bảo vệ thực vật.
Phạm, T. T. (2011). Thực trạng về sản xuất và ứng dụng các chế phẩm vi sinh vật để phòng trừ dịch hại cây trồng ở Việt Nam trong 20 năm qua, Trang web chính thức của Viện Khoa học Kỹ thuật Nông nghiệp miền Nam (iasvn.org).
Phạm, V. T., & Vũ, N. T. (2007). Công nghệ sinh học (Tập 5 – Công nghệ vi sinh vi môi trường), Nxb. Giáo dục, trang 107.
Pilaquinga, F., Morejón, B., Ganchala, D., Morey, J., Piña, N., Debut, A., & Neira, M. (2019). Green synthesis of silver nanoparticles using Solanum mammosum L.(Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L.(Diptera: Culicidae). Plos one, 14(10), e0224109.
Ramasamy, A., Suresh, M., & Mallesh, M. S. H. (2020). Toxicity evaluation of Aphidicidal crystalliferous toxins from Bacillus thuringiensis strains: a molecular study. Annals of Microbiology, 70, 1-14.
Riaz, B., Zahoor, M. K., Zahoor, M. A., Majeed, H. N., Javed, I., Ahmad, A., ... & Sultana, K. (2018). Toxicity, phytochemical composition, and enzyme inhibitory activities of some indigenous weed plant extracts in fruit fly, Drosophila melanogaster. Evidence‐Based Complementary and Alternative Medicine, 2018(1), 2325659.