Coulomb drag in double bilayer graphene with inhomogenous background dielectric

Van Oai Truong1, , Nguyễn Văn Mện2
1 Post-ggraduate student, Dong Thap University, Cao Lanh 870000, Vietnam
2 Phòng Đào tạo, Trường Đại học An Giang, Việt Nam

Main Article Content

Abstract

This paper presents the results of a study on Coulomb drag resistivity in double bilayer graphene under the influence of an inhomogeneous substrate dielectric. Using the random phase approximation (RPA), we determine the system's polarization function and the frequency-dependent dielectric function, thereby calculating the Coulomb drag resistivity. The results indicate that the Coulomb drag resistivity increases with increasing temperature but decreases rapidly as the interlayer distance between the bilayer graphene sheets increases. Notably, when considering an inhomogeneous background dielectric, the Coulomb drag resistivity is significantly higher than that in the case of a homogeneous dielectric. This phenomenon arises from the modification of the Coulomb interaction potential between electrons in the two layers due to the inhomogeneity of the background dielectric. Furthermore, calculations reveal that at different temperatures, the Coulomb drag resistivity tends to decrease with increasing carrier density. However, a distinct difference emerges between two cases: small and large interlayer separations. When the interlayer sepaation is small, the Coulomb drag resistivity is more strongly influenced by carrier density and temperature. These findings provide further insights into the role of the inhomogeneous background dielectric in double bilayer graphene systems and suggest potential applications for next-generation graphene-based electronic devices.

Article Details

References

Amorim, B., & Peres, N. M. R. (2012). On Coulomb drag in double layer systems. Journal of Physics: Condensed Matter, 24(33), 335602. https://doi.org/10.1088/0953-8984/24/33/335602
Arora, P., Singh, G., & Moudgil, R. K. (2018). Dynamic correlation effects on drag resistivity of a symmetric electron-electron bilayer. The European Physical Journal B, 91(8), 1–7. https://doi.org/10.1140/epjb/e2018-90127-4
Asgari, R., Tanatar, B., & Davoudi, B. (2008). Comparative study of screened interlayer interactions in the Coulomb drag effect in bilayer electron systems. Physical Review B, 77(11), 115301. https://doi.org/10.1103/PhysRevB.77.115301
Badalyan, S. M., & Peeters, F. M. (2012a). Effect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at finite temperatures. Physical Review B, 85(19), 195444. https://doi.org/10.1103/PhysRevB.85.195444
Badalyan, S. M., & Peeters, F. M. (2012b). Enhancement of Coulomb drag in double-layer graphene structures by plasmons and dielectric background inhomogeneity. Physical Review B, 86(12), 121405(R). https://doi.org/10.1103/PhysRevB.86.121405
Carrega, M., Tudorovskiy, T., Principi, A., Katsnelson, M. I., & Polini, M. (2012). Theory of Coulomb drag for massless Dirac fermions. New Journal of Physics, 14(6), 063033. https://doi.org/10.1088/1367-2630/14/6/063033
Das Sarma, S., Hwang, E. H., & Rossi, E. (2010). Theory of carrier transport in bilayer graphene. Physical Review B, 81(16), 161407(R). https://doi.org/10.1103/PhysRevB.81.161407
Flensberg, K., Hu, B. Y.-K., Jauho, A.-P., & Kinaret, J. M. (1995). Linear-response theory of Coulomb drag in coupled electron systems. Physical Review B, 52(20), 14761. https://doi.org/10.1103/PhysRevB.52.14761
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. https://doi.org/10.1038/nmat1849
Ho, D. Y. H., Yudhistira, I., Hu, B. Y.-K., & Adam, S. (2018). Theory of Coulomb drag in spatially inhomogeneous 2D materials. Communications Physics, 1(1), 41. https://doi.org/10.1038/s42005-018-0039-y
Hwang, E. H., & Das Sarma, S. (2007). Dielectric function, screening, and plasmons in two-dimensional graphene. Physical Review B, 75(20), 205418. https://doi.org/10.1103/PhysRevB.75.205418
Hwang, E. H., & Das Sarma, S. (2009). Plasmon modes of spatially separated double-layer graphene. Physical Review B, 80(20), 205405. https://doi.org/10.1103/PhysRevB.80.205405
Hwang, E. H., Sensarma, R., & Das Sarma, S. (2011). Coulomb drag in monolayer and bilayer graphene. Physical Review B, 84(24), 245441. https://doi.org/10.1103/PhysRevB.84.245441
Narozhny, B. N., & Levchenko, A. (2016). Coulomb drag. Reviews of Modern Physics, 88(2), 025003. https://doi.org/10.1103/RevModPhys.88.025003
Nguyen, V. M. (2020). Coulomb bare interactions in inhomogeneous 4-layer graphene structures. Physics Letters A, 384(29), 126777. https://doi.org/10.1016/j.physleta.2020.126777
Nguyen, V. M., & Dong, T. K. P. (2020). Plasmon modes in double-layer gapped graphene at zero temperature. Physics Letters A, 384(10), 126221. https://doi.org/10.1016/j.physleta.2019.126221
Nguyen, V. M., & Dong, T. K. P. (2021). Temperature effects on plasmon modes in double-bilayer graphene structures. Solid State Communications, 334–335, 114398. https://doi.org/10.1016/j.ssc.2021.114398
Nguyen, V. M., Nguyen, Q. K., & Dong, T. K. P. (2019). Plasmon modes in double bilayer graphene heterostructures. Solid State Communications, 294, 43–48. https://doi.org/10.1016/j.ssc.2019.03.008
Politano, A., Chiarello, G., & Spinella, C. (2017). Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy. Materials Science in Semiconductor Processing, 65, 88–99. https://doi.org/10.1016/j.mssp.2016.05.002
Politano, A., Wang, L., & Chiarello, G. (2018). Insight on thermally activated hydrocarbon dehydrogenation on the Pt3Ni(111) surface: From adsorbed hydrocarbons up to graphene formation. The Journal of Physical Chemistry C, 122(7), 3885–3892. https://doi.org/10.1021/acs.jpcc.7b11102
Principi, A., Asgari, R., & Polini, M. (2011). Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate. Solid State Communications, 151(21), 1627–1630. https://doi.org/10.1016/j.ssc.2011.07.015
Principi, A., Carrega, M., Asgari, R., Pellegrini, V., & Polini, M. (2012). Plasmons and Coulomb drag in Dirac/Schrödinger hybrid electron systems. Physical Review B, 86(8), 085421. https://doi.org/10.1103/PhysRevB.86.085421
Ryzhii, V., Dubinov, A. A., Aleshkin, V. Ya., Ryzhii, M., & Otsuji, T. (2013). Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure. Applied Physics Letters, 103(16), 163507. https://doi.org/10.1063/1.4826113
Sensarma, R., Hwang, E. H., & Das Sarma, S. (2011). Dynamic screening and low energy collective modes in bilayer graphene. Physical Review B, 82, 195428. https://doi.org/10.1103/PhysRevB.82.195428
Stauber, T., & Gómez-Santos, G. (2012). Plasmons and near-field amplification in double-layer graphene. Physical Review B, 85(7), 075410. https://doi.org/10.1103/PhysRevB.85.075410
Upadhyay, S. K., & Saini, L. K. (2020). Coulomb drag study in electron-electron bilayer system with a dielectric medium. Physica E: Low-dimensional Systems and Nanostructures, 124, 114350. https://doi.org/10.1016/j.physe.2020.114350
Upadhyay, S. K., & Saini, L. K. (2021). Coulomb drag study in graphene/GaAs bilayer system with the effect of local field correction and dielectric medium. Physica E: Low-dimensional Systems and Nanostructures, 127, 114484. https://doi.org/10.1016/j.physe.2020.114484
Vazifehshenas, T., Amlaki, T., Farmanbar, M., & Parhizgar, F. (2010). Temperature effect on plasmon dispersions in double-layer graphene systems. Physics Letters A, 374(48), 4899–4903. https://doi.org/10.1016/j.physleta.2010.10.026
Zhu, J.-J., Badalyan, S. M., & Peeters, F. M. (2013). Plasmonic excitations in Coulomb-coupled N-layer graphene structures. Physical Review B, 87, 085401. https://doi.org/10.1103/PhysRevB.87.085401