Plasmon modes in three-layer graphene with inhomogeneous background dielectric

Van Men Nguyen1, , Thi Kim Phuong Dang1, Minh Rang Truong2
1 An Giang University, Vietnam National University Ho Chi Minh City, Vietnam
2 Student, An Giang University, Vietnam National University Ho Chi Minh City, Vietnam

Main Article Content

Abstract

The aim of this paper is to investigate collective excitations and the damping rate in a multilayer structure consisting of three monolayer graphene sheets with inhomogeneous background dielectric at zero temperature within random-phase approximation. Numerical results show that one optical branch and two acoustic ones exist in the system. The lowest frequency branch disappears as touching single-particle excitation area boundary while two higher frequency branches continue in this region. Calculations also illustrate that the frequency of optical (acoustic) mode(s) decreases (increase) as interlayer separation increases. The inhomogeneity of background dielectric and the imbalance in the carrier density in graphene sheets decline significantly plasmon frequencies in the system. Therefore, it is meaningful to take into account the effects of inhomogeneous background dielectric when calculating collective excitations in three-layer graphene structures.

Article Details

References

Badalyan, S. M., & Peeters, F. M. (2012). Eff ect of nonhomogenous dielectric background on the plasmon modes in graphene double-layer structures at fi nite temperatures. Physical Review B, (85), 195444.
DasSarma, S., Adam, S., Hwang, E. H., & Rossi, E. (2011). Electronic transport in two dimensional graphene. Review Modern Physics, (83), 407.
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Mater, (6), 183.
Hwang, E. H., & DasSarma, S. (2007). Dielectric function, screening, and plasmons in 2D graphene. Physical Review B, (75), 205418.
Hwang, E. H., & DasSarma, S. (2009). Exotic plasmon modes of double layer graphene. Physical Review B, (80), 205405.
Khanh, N. Q., & Men, N. V. (2018). Plasmon Modes in Bilayer–Monolayer Graphene Heterostructures. Physica Status Solidi B, (255), 1700656.
Maier, S. A. (2007). Plasmonics – Fundamentals and Applications. New York: Springer.
McCann, E. (2011). Electronic Properties of Monolayer and Bilayer Graphene. In: Raza H. (eds) Graphene Nanoelectronics.
NanoScience and Technology. Berlin, Heidelberg: Springer. https://doi. org/10.1007/978-3-642-22984-8_8.
Men, N. V., & Khanh, N. Q. (2017). Plasmon modes in graphene–GaAs heterostructures. Physics Letters A, (381), 3779.
Men, N. V. (2019). Coulomb bare interaction in three-layer graphene. Dong Thap University Journal of Science, (39), 82-87.
Men, N. V. (2020). Plasmon modes in N-layer gapped graphene. Physica B, 578, 411876.
Men, N. V., Khanh, N. Q., & Phuong, D. T. K. (2019). Plasmon modes in N-layer bilayer graphene structures. Solid State Communications, (298), 113647.
Phuong, D. T. K., & Men, N. V. (2019). Plasmon modes in 3-layer graphene structures: Inhomogeneity eff ects. Physics Letters A, (383), 125971.
Politano, A., Cupolillo, A., Di Profio, G., Arafat, H. A., Chiarello, G., & Curcio, E. (2016). When plasmonics meets membrane technology. J. Phys. Condens. Matter, (28), 363003.
Politano, A., Pietro, A., Di Profi o, G., Sanna, V., Cupolillo, A., Chakraborty, S., Arafat, H., & Curcio, E. (2017). Photothermal membrane distillation for seawater desalination. Advanced Materials, (29), 03504.
Principi, A., Carrega, M., Asgari, R., Pellegrini, V., & Polini, M. (2012). Plasmons and Coulomb drag in Dirac/Schrodinger hybrid electron systems. Physical Review B, (86), 085421.
Ryzhii, V., Ryzhii, M., Mitin, V., Shur, M. S., Satou, A., & Otsuji, T. (2013). Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene- layer structure. J. Appl. Phys., (113), 174506.
Scharf, B., & Matos-Abiague, A. (2012). Coulomb drag between massless and massive fermions. Physical Review B, (86), 115425.
Sensarma, R., Hwang, E. H., & Sarma, S. D. (2010). Dynamic screening and low energy collective modes in bilayer graphene. Physical Review B, (82), 195428.
Shin, J-S., Kim, J-S., & Kim, J. T. (2015). Graphene-based hybrid plasmonic modulator. J. Opt., (17), 125801.
Vazifehshenas, T., Amlaki, T., Farmanbar, M., & Parhizgar, F. (2010). Temperature eff ect on plasmon dispersions in double-layer graphene systems. Physics Letters A, (374), 4899.
Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., Zhu, W., Avouris, P., & Xia, F. (2012). Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech., (7), 330.
Zhu, J.-J., Badalyan, S. M., & Peeters, F. M. (2013). Plasmonic excitations in Coulomb- coupled N-layer graphene structures. Physical Review B, (87), 085401.