Plasmon modes in three-layer graphene with inhomogeneous background dielectric
Main Article Content
Abstract
The aim of this paper is to investigate collective excitations and the damping rate in a multilayer structure consisting of three monolayer graphene sheets with inhomogeneous background dielectric at zero temperature within random-phase approximation. Numerical results show that one optical branch and two acoustic ones exist in the system. The lowest frequency branch disappears as touching single-particle excitation area boundary while two higher frequency branches continue in this region. Calculations also illustrate that the frequency of optical (acoustic) mode(s) decreases (increase) as interlayer separation increases. The inhomogeneity of background dielectric and the imbalance in the carrier density in graphene sheets decline significantly plasmon frequencies in the system. Therefore, it is meaningful to take into account the effects of inhomogeneous background dielectric when calculating collective excitations in three-layer graphene structures.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Collective excitations, inhomogeneous background dielectric, random–phase–approximation, three-layer graphene systems
References
DasSarma, S., Adam, S., Hwang, E. H., & Rossi, E. (2011). Electronic transport in two dimensional graphene. Review Modern Physics, (83), 407.
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Mater, (6), 183.
Hwang, E. H., & DasSarma, S. (2007). Dielectric function, screening, and plasmons in 2D graphene. Physical Review B, (75), 205418.
Hwang, E. H., & DasSarma, S. (2009). Exotic plasmon modes of double layer graphene. Physical Review B, (80), 205405.
Khanh, N. Q., & Men, N. V. (2018). Plasmon Modes in Bilayer–Monolayer Graphene Heterostructures. Physica Status Solidi B, (255), 1700656.
Maier, S. A. (2007). Plasmonics – Fundamentals and Applications. New York: Springer.
McCann, E. (2011). Electronic Properties of Monolayer and Bilayer Graphene. In: Raza H. (eds) Graphene Nanoelectronics.
NanoScience and Technology. Berlin, Heidelberg: Springer. https://doi. org/10.1007/978-3-642-22984-8_8.
Men, N. V., & Khanh, N. Q. (2017). Plasmon modes in graphene–GaAs heterostructures. Physics Letters A, (381), 3779.
Men, N. V. (2019). Coulomb bare interaction in three-layer graphene. Dong Thap University Journal of Science, (39), 82-87.
Men, N. V. (2020). Plasmon modes in N-layer gapped graphene. Physica B, 578, 411876.
Men, N. V., Khanh, N. Q., & Phuong, D. T. K. (2019). Plasmon modes in N-layer bilayer graphene structures. Solid State Communications, (298), 113647.
Phuong, D. T. K., & Men, N. V. (2019). Plasmon modes in 3-layer graphene structures: Inhomogeneity eff ects. Physics Letters A, (383), 125971.
Politano, A., Cupolillo, A., Di Profio, G., Arafat, H. A., Chiarello, G., & Curcio, E. (2016). When plasmonics meets membrane technology. J. Phys. Condens. Matter, (28), 363003.
Politano, A., Pietro, A., Di Profi o, G., Sanna, V., Cupolillo, A., Chakraborty, S., Arafat, H., & Curcio, E. (2017). Photothermal membrane distillation for seawater desalination. Advanced Materials, (29), 03504.
Principi, A., Carrega, M., Asgari, R., Pellegrini, V., & Polini, M. (2012). Plasmons and Coulomb drag in Dirac/Schrodinger hybrid electron systems. Physical Review B, (86), 085421.
Ryzhii, V., Ryzhii, M., Mitin, V., Shur, M. S., Satou, A., & Otsuji, T. (2013). Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene- layer structure. J. Appl. Phys., (113), 174506.
Scharf, B., & Matos-Abiague, A. (2012). Coulomb drag between massless and massive fermions. Physical Review B, (86), 115425.
Sensarma, R., Hwang, E. H., & Sarma, S. D. (2010). Dynamic screening and low energy collective modes in bilayer graphene. Physical Review B, (82), 195428.
Shin, J-S., Kim, J-S., & Kim, J. T. (2015). Graphene-based hybrid plasmonic modulator. J. Opt., (17), 125801.
Vazifehshenas, T., Amlaki, T., Farmanbar, M., & Parhizgar, F. (2010). Temperature eff ect on plasmon dispersions in double-layer graphene systems. Physics Letters A, (374), 4899.
Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., Zhu, W., Avouris, P., & Xia, F. (2012). Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech., (7), 330.
Zhu, J.-J., Badalyan, S. M., & Peeters, F. M. (2013). Plasmonic excitations in Coulomb- coupled N-layer graphene structures. Physical Review B, (87), 085401.
Most read articles by the same author(s)
- Thi Kim Phuong Dong, Van Men Nguyen, The effects of circle-method in finding solutions for mechanical oscillation and wave problems , Dong Thap University Journal of Science: No. 34 (2018): Part A - Social Sciences and Humanities
- Van Men Nguyen, Thi Kim Phuong Dong, Long wavelength approximation analytical plasmon frequency in BLG – GaAs heterosructure , Dong Thap University Journal of Science: No. 33 (2018): Part B - Natural Sciences
- Van Men Nguyen, Coulomb bare interaction in three-layer graphene , Dong Thap University Journal of Science: No. 39 (2019): Part B - Natural Sciences