Optimal model for predicting students’ learning results at Dong Thap University
Main Article Content
Abstract
This article applies the Naive Bayesian classifier, decision tree and neural nets, to set up, evaluate and come up with an optimal model, based on database at Dong Thap University. It recommends that the Naïve Bayesian is the optimal model for predicting students’ learning results at Dong Thap University. Thereby, it helps students to set learning objectives and make plans for their entire traning programs and each semester, as such to obtain results as expected.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Keywords
Classification methods, decision tree, Naive Bayesian, neural nets
References
[2]. Brian Knight, Devin Knight, Adam Jorgensen, Patrick LeBlanc, Mike Davis (2010), Knight's Microsoft Business Intelligence 24-Hour Trainer, Published by Wiley Publishing, Inc.
[3]. Jamie MacLennan, ZhaoHui Tang, Bogdan Crivat (2008), Data Mining with Microsoft SQL Server 2008, Published by Wiley Publishing, Inc., Indianapolis, Indiana.
[4]. Võ Viết Minh Nhật (2013), Mạng Nơ-ron nhân tạo và ứng dụng, NXB Giáo dục Việt Nam.
[5]. Lê Văn Phùng và Quách Xuân Trưởng (2012), Khai phá dữ liệu, NXB Thông tin và Truyền thông.
[6]. J.Ross Quinlan, X. Wu, V. Kumar (2009), Top 10 Algorithms in Data Mining, Chapman & Hall/ CRC, ©Taylor & Francis Group, LLC.
[7]. Hà Quang Thụy (2009), Giáo trình khai phá dữ liệu Web, NXB Giáo dục Việt Nam.
[8]. Nguyễn Thị Thanh Thủy (2012), “Ứng dụng khai phá dữ liệu xây dựng công cụ dự đoán kết quả học tập của sinh viên“, Kỷ yếu Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 8 Đại học Đà Nẵng, tr. 15-21.
Most read articles by the same author(s)
- Thi Thu Lieu Dang, Van Tho Tran, Quang Minh Le, Realities and measures to improving the emulation - reward work at Dong Thap University , Dong Thap University Journal of Science: Vol. 10 No. 2 (2021): Social Sciences and Humanities Issue (Vietnamese)