Sequentially necessary and sufficient conditions for solutions of optimization problems with inclusion constraints

Kim Ngan Nguyen1, Duc Thinh Vo2,
1 Student, Dong Thap University
2 Dong Thap University

Main Article Content

Abstract

In this paper, we provide sequentially necessary and sufficient conditions for optimal solutions of optimization problems with inclusion constraints. The sequentially optimal conditions obtained are without any constraints.

Article Details

References

[1]. J. M. Borwein and H. Wolkowicz (1982), “Characterizations of optimality without constraint qualification for the abstract convex program”, Math. Programming Stud., (19), p. 77-100.
[2]. A. Brondsted and R. T. Rockafellar (1965), “On the subdifferentiability of convex functions”, Proc. Amer. Math. Soc., (16), p. 605-611.
[3]. S. Dempe and A. B. Zemkoho (2012), “On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem”, Nonlinear Anal., (75), p. 1202-1218.
[4]. S. Dempe, N. Dinh, and J. Dutta (2010), “Optimality Conditions for a Simple Convex Bilevel Programming Problem”, Variational Analysis and Generalized Differentiation in Optimization and Control Springer Optimization and Its Applications, (47), p. 149-161.
[5]. A. Dhara and J. Dutta (2012), Optimality Conditions in Convex Optimization, A Finite-Dimension View, Taylor and Francis Group.
[6]. W. Heins and S. K. Mitter (1970), “Conjugate convex function, Duality and Optimal control, Problem I: Systems Governed Ordinary Differential equations”, Inform. Sciences, (2), p. 211-243.
[7]. V. Jeyakumar, G. M. Lee, and N. Dinh (2003), “New sequential Lagrange multiplier conditions charactering optimality without constraint qualification for convex programs”, Siam J. Optim., (14), p. 534-547.
[8]. V. Jeyakumar, A. M. Rubinov, B. M. Glover, and Y. Ishizuka (1996), “Inequality systems and Global optimization”, J. Math. Anal. App., (202), p. 900-919.
[9]. P. Kanniappan (1983), “ Necessary condition for optimality of nondifferentiable convex multiobjective programming”, J. Optim. Theory and App., (40), p. 167-174.
[10]. L. Thibault (1997), “Sequential convex subdifferential calculus and Lagrange multipliers”, Siam J. Control Optim., (7), p. 641-662.